首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper treats the crush behaviour and energy absorption response of foam-filled conical tubes subjected to oblique impact loading. Dynamic computer simulation techniques validated by experimental testing are used to carry out a parametric study of such devices. The study aims at quantifying the energy absorption of empty and foam-filled conical tubes under oblique impact loading, for variations in the load angle and geometry parameters of the tube. It is evident that foam-filled conical tubes are preferable as impact energy absorbers due to their ability to withstand oblique impact loads as effectively as axial impact loads. Furthermore, it is found that the energy absorption capacity of filled tubes is better maintained compared to that of empty tubes as the load orientation increases. The primary outcome of this study is design information for the use of foam-filled conical tubes as energy absorbers where oblique impact loading is expected.  相似文献   

2.
This article attempts to increase the crashworthiness characteristics of energy absorbers. It is found that the effect of the bi-tubular arrangement on the energy absorption and peak force is nonlinear. This nonlinearity is somewhat related to friction but is mostly related to the changing of buckling modes. Therefore, it is possible to reach higher Specific Absorbed Energy (SAE) in the bi-tubular case than with two tubes since the weight is the same in both arrangements while the energy absorption is higher in the bi-tubular case. To exploit this, multi-objective optimization of bi-thin walled cylindrical aluminium tubes under axial impact loading is performed. The absorbed energy and the SAE are considered as the objective functions while the maximum crush load is regarded as a constraint. Finally, the optimal dimensions of tubes are found in order to maximize the SAE and energy absorption for a specified maximum crushing force.  相似文献   

3.
The high Specific Energy Absorption (SEA) of composite tubular structures makes them attractive candidates in energy absorbing structural applications such as front rails in vehicles. To incorporate primary composite components in vehicle structures requires numerical simulation tools that can predict the structural performance of the vehicle under various loading conditions including crashworthiness. In previous studies, axial crush simulations of braided composite tubes tended to generate global buckling, which are inconsistent with the steady crush behavior observed in experiments. It was found that the constitutive models based on the continuum damage mechanics (CDM) framework are inadequate to represent the unloading response of damaged composites. In axial crush experiments, braided composite tubes form multiple continuous crush fronds. Local unloading occurs when material moving out of the crush front becomes part of the crush frond. Improper representation of the material unloading response affects the computed total energy absorption of the structure. To address this issue, an analog model was developed to describe the unloading path of compressively damaged composites. This approach was implemented in CODAM, as a user defined composite CDM model for the explicit finite element code LS-DYNA®. The improved CODAM model results in a significantly improved prediction of the tube crush.  相似文献   

4.
In real-world impact loading situations the structure could be subjected to both axial and off-axis loads. Tapered thin-walled rectangular tubes have been considered desirable impact energy absorbers due to their ability to withstand oblique impact loads as effectively as axial loads. Despite this, relatively few studies have been reported on the response of such structures under oblique loading. The aim of this paper is to compare the energy absorption response of straight and tapered thin-walled rectangular tubes under oblique impact loading, for variations in the load angle, impact velocity and tube dimensions. It is found that the mean load and energy absorption decrease significantly as the angle of applied load increases. Nevertheless, tapering a rectangular tube enhances its energy absorption capacity under oblique loading. The outcome of the study is design information for the use of straight and tapered thin-walled rectangular tubes as energy absorbers in applications where oblique impact loading is expected.  相似文献   

5.
The impact behaviour of tubular hydroformed axial crush tubes is examined. The results of dynamic axial crush tests performed with both non-hydroformed and hydroformed AA5754 aluminum alloy tubes were compared to predictions from finite element models. Explicit dynamic finite element simulations of the hydroforming and crash events were carried out with particular attention to the transfer of forming history from the hydroforming simulations to the crash models. The values of tube thickness, work hardening, and residual stresses at the end of the hydroforming simulations were used as the initial state for the crash models. In general, simulations performed using the von Mises yield criterion with isotropic material behaviour gave reasonable predictions when compared to experimental data. It was found that it was important to account for the forming history of the hydroforming operation in the axial crush models. The results showed that work hardening resulting from hydroforming is beneficial to increasing the energy absorption during crash, whereas thickness reduction decreased the energy absorption. Residual stresses had little effect on the energy absorption characteristics. It was also shown that the energy absorption characteristics of tubes with the same mass could vary greatly by adjusting the geometry of the tube and the amount of work hardening experienced by the tube during hydroforming.  相似文献   

6.
研究薄壁圆锥管轴向压缩吸能特性有助于其合理广泛应用于抗冲击、抗振动结构中。轴向倾角是使得圆锥管轴向压缩性能有别于直管的主要因素。当轴向倾角小于临界角度时,圆锥管平均轴向压缩力随倾角增加而变大但最大初始轴力会线性减小;吸能稳定因子随倾角增加而提高,但是比吸能却相应非线性降低。圆锥管在轴向压缩时过程中存在三种典型变形模式,分别为“钻石-堆叠”模式,“钻石-嵌套”模式及“环形-嵌套”模式,通过对“环形-嵌套”模式变形过程的观测及变形机理分析,建立了相应的理论模型,基于该理论模型给出了圆锥管“环形-嵌套”模式变形时吸能特性的预测方法。  相似文献   

7.
In this paper, we describe a numerical investigation on the quasi-static axial crush performance of aluminum–composite hybrid tubes containing a filament-wound E-glass fiber-reinforced epoxy over-wrap around square aluminum tubes. The fiber orientation angle in the overwrap was varied between [±30°] and [90°] with respect to the tube’s axis. The quasi-static axial crush resistance of the hybrid tubes are compared in terms of the maximum load, mean crush load, crush energy and specific energy absorption. The deformation modes of these tubes are also described. An empirical equation is proposed for predicting the mean crush force of hybrid tubes.  相似文献   

8.
玻璃/环氧圆柱管能量吸收细观机理   总被引:2,自引:1,他引:1       下载免费PDF全文
研究了玻璃纤维增强环氧圆柱管轴向撞击和准静态压缩下的能量吸收特性。总结了稳态压缩的三种宏观破坏模式,即层束弯曲、局部屈曲和横向剪切。从细观角度出发,详细研究了不同宏观破坏模式的复合材料圆柱管的能量耗散机理,并比较了吸能能力。随着铺设角度增大,能量吸收机理由基体控制向纤维与基体共同控制转化,因此能量吸收逐渐增大。本文还比较了撞击和准静态下能量吸收的特点。  相似文献   

9.
This paper experimentally investigates the crash responses of the empty and polyurethane foam‐filled conical tubes with shallow spherical caps under quasi‐static axial loading. To find more details about the energy absorption mechanism, finite element methods is used to simulate the crush process. In terms of finding more efficient and lighter crash absorbers particularly, the energy absorption and specific energy absorption and load ratio have been considered. The influences of the tube geometrical and material parameters such as radius of spherical region, wall thickness, length, semi‐apical angle and foam density on the energy absorption mechanism have been investigated. This study provides practical information for the use of thin‐walled tubes with shallow spherical caps as energy absorbers in aerospace applications to design reentry of sounding rocket based on foam‐filled conical tube with shallow spherical caps.  相似文献   

10.
Foam-filled thin-walled tubes are considered to be desirable energy absorbers under axial loading due to their higher energy absorption compared with empty tubes. This paper treats the axial crushing and energy absorption response of foam-filled conical tubes under quasi-static axial loading, using non-linear finite element models. Influence of important parameters such as wall thickness, semi-apical angle and density of foam filler was investigated and the results highlight the advantages of using foam-filled conical tubes as energy absorber. Results also indicate that the crush and energy absorption performances of conical tubes are significantly enhanced by foam filling. The primary outcome of the study is new research information and development of empirical relations which will facilitate the design of foam-filled conical tubes as energy absorbers in impact applications.  相似文献   

11.
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.  相似文献   

12.
Energy absorption capacity and collapse of cylindrical and square thin-walled aluminum tubes with a crack shaped trigger under axial compression are studied in this paper. Furthermore, the effects of length, angle, location and situation of cracks on the mechanical behavior of tubes are investigated. The results of this research show that the cracks change the collapse processes and folding modes; this effects are greater for the cylindrical tubes; the maximum load is reduced between 4.92% and 31.33% for cylindrical and between 2.55% and 18.52% for square tubes; the cracks increase the crush force efficiency up to 67.03% and 31.06%, and absorbed energy up to 30.45% and 30.16% for cylindrical and square tubes, respectively. The maximum load for all of the cracked tubes is less than that of intact tubes and increasing the crack angle from 0° to 45° decreases the maximum load and from 45° to 60° increases it. Finally, parallel cracks are more effective than perpendicular cracks.  相似文献   

13.
In this paper, energy absorption capability of axial crush and bending collapse of aluminum/GFRP hybrid tubes were investigated. Glass fiber–epoxy composite prepregs were wrapped around an aluminum tube and then cured completely in the autoclave under the recommended cure cycle. Bonding process between composite and aluminum tubes was performed by excess resin extracted from the composite tube during curing process. For comparing energy absorption characteristics of the hybrid tube with those of pure aluminum and composite tubes, tests were performed using specimens made of an aluminum alloy and a composite material, respectively.

Failure mechanisms of the hybrid tube under the axial compressive load and the bending load were experimentally investigated. For calculating energy absorption capability of axial crush and bending collapse behaviors of the hybrid tube, the modified plastic hinge collapse model and the modified Kecman's model for hybrid tube were suggested, respectively. Two suggested models for the hybrid tube showed a good agreement with the experimental results.  相似文献   


14.
锥形泡沫填充结构结合了泡沫填充结构与锥形结构的优势,具有优异的吸能性和抵抗失稳变形的能力。研究了具有不同横截面的泡沫填充多边形单锥管(FSPTTs)与泡沫填充多边形双锥管(FBPTTs)在四种冲击角度下的耐撞性。采用多准则评估方法(COPRAS)对不同横截面的泡沫填充单锥管与泡沫填充双锥管的综合耐撞性进行了评估。评估表明:综合考虑多种冲击角度时,圆形截面泡沫填充单锥管较其他截面泡沫填充单锥管具有更好的耐撞性;圆形截面泡沫填充双锥管较其他截面泡沫填充双锥管具有更好的耐撞性。最后,针对圆形截面泡沫填充单锥管与圆形截面泡沫填充双锥管,以最大比吸能和最小峰值力为目标,采用非支配遗传算法对这两种结构在四种冲击角度下进行了多目标优化。结果表明:当冲击角度从0°变化到10°时,两种结构的Pareto曲线变化不大,而当冲击角度从10°变化到30°时,冲击角度对Pareto曲线形状和位置有显著影响;在冲击角度为0°和10°时,圆形截面泡沫填充双锥管的耐撞性优于圆形截面泡沫填充单锥管,而在冲击角度为20°和30°时,圆形截面泡沫填充单锥管的耐撞性优于圆形截面泡沫填充双锥管。实际应用中,可以根据工程需要选择合适的结构。  相似文献   

15.
In this work the crushing response and crashworthiness characteristics of thin-wall square FRP (fibre reinforced plastic) tubes that were impact tested at high compressive strain rate are compared to the response of the same tubes in static axial compressive loading. The material combination of the tested specimens was carbon fibres in the form of reinforcing woven fabric in epoxy resin, and the tested tubes were constructed trying three different laminate stacking sequences and fibre volume contents on approximately the same square cross-section. Comparison of the static and dynamic crushing characteristics is made by examining the collapse modes, the shape of the load–displacement curves, the peak and average compressive load and the absorbed amount of crushing energy in both loading cases. In addition, the influence of the tube geometry (axial length, aspect ratio and wall thickness), the laminate material properties-such as the fibre volume content and stacking sequence-and the compressive strain rate on the compressive response, the collapse modes, the size of the peak load and the energy absorbing capability of the thin-wall tubes is extensively analysed.  相似文献   

16.
建立了泡沫铝填充薄壁方管的有限元模型,利用试验对泡沫铝填充薄壁方管的有限元模型的准确性进行了验证。研究了诱导结构的类型和数量对泡沫铝填充薄壁方管的轴向压溃变形模式、初始峰值力、压溃力效率和能量吸收能力的影响,结果表明:设计诱导结构可以提高能量吸收能力、减小初始峰值力、增加压溃力效率,甚至可以改变压溃变形模式。沿薄壁方管的轴向方向合理地增加诱导结构的数量,可以进一步的减小初始峰值力、增加压溃力效率、提高结构的能量吸收能力。通过等级评价方法,确定沿薄壁方管的轴向方向设计4组诱导四角方孔可以使泡沫铝填充薄壁方管获得最佳的综合吸能特性。  相似文献   

17.
This present study investigates experimentally and numerically the crush response and energy absorption performances of auxetic foam-filled square tubes under quasi-static axial loading. Three different structures: empty, conventional and auxetic foam-filled square tubes have been compared and examined with respect to the deformation modes and load–displacement curves. Standard compression tests were conducted on the tubes to evaluate the influence of auxetic foam in the energy absorption of empty tubes. Moreover, results from computer simulation have also been supplemented to further examine the abovementioned effect. It is discovered that the auxetic foam-filled square tube is superior to empty and conventional foam-filled square tubes in terms of all studied crashworthiness indicators.  相似文献   

18.
Numerical Study on Hybrid Tubes Subjected to Static and Dynamic Loading   总被引:1,自引:0,他引:1  
The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The numerical simulation elucidated the crushing behaviors of these tubes under both quasi-static compression and axial dynamic impact loading. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The stress–strain curves under different strain rates were used to determine the dynamic impact of strain rate effects on the metal. The results were compared with those of a simplified analytical model and the mean crushing force thus predicted agreed closely with the numerical simulations. The numerical results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.  相似文献   

19.
该文提出了三种新型的诱导结构设计方案来降低薄壁方管结构在轴向载荷作用下的初始屈曲载荷峰值。诱导结构设计在方管的加载端,在压缩开始的时候起作用,并且不会显著影响结构在正常工作时的强度和刚度。利用AA 6063 T6 铝合金薄壁方管进行了一系列准静态和动态试验来研究了具有诱导结构的方管在轴向压缩时的能量吸收性能,给出了完整薄壁铝方管和具有诱导结构的薄壁铝方管的载荷位移曲线,并进行了比较。实验发现,三种诱导结构均可有效降低屈曲时的初始载荷峰值、提高方管承载吸能平稳性。  相似文献   

20.
This investigation is concerned with the development of a multi-unit-cell which enables the modeling of the mechanical response of metallic foams subject to oblique loadings. The geometry of the cell was derived from careful observation of the foam morphology. The new closed unit cell is formed by the use of ellipsoids which are interconnected through a truncated pyramid. In this approach, we represent the morphology of closed-cell aluminum foams through the use of corresponding average uniform geometrical and mechanical properties. Extensive multi-unit-cell finite element analyses were conducted to examine the effect of key geometric parameters on the collapse load, normalized crush force versus deformation characteristics as well as the corresponding energy absorption. The numerical simulations were compared with crush test experiments involving different oblique loads. In spite of showing an initial stiff response, which is typical in idealized numerical models, the results revealed that the developed multi-unit-cell is able to simulate the crush behavior of closed-cell foams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号