首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
A class of mixed interpolated beam elements is introduced in this paper under the framework of the Carrera Unified Formulation to eliminate the detrimental effects due to shear locking. The Mixed Interpolation of Tensorial Components (MITC) method is adopted to generate locking‐free displacement‐based beam models using general 1D finite elements. An assumed distribution of the transverse shear strains is used for the derivation of the virtual work, and the full Gauss‐Legendre quadrature is used for the numerical computation of all the components of the stiffness matrix. Linear, quadratic, and cubic beam elements are developed using the unified formulation and applied to linear static problems including compact, laminated, and thin‐walled structures. A comprehensive study of how shear locking affects general beam elements when different classical integration schemes are used is presented, evidencing the outstanding capabilities of the MITC method to overcome this numerical issue. Refined beam theories based on the expansion of pure and generalized displacement variables are implemented making use of Lagrange and Legendre polynomials over the cross‐sectional domain, allowing one to capture complex states of stress with a 3D‐like accuracy. The numerical examples are compared to analytic, numerical solutions from the literature, and commercial software solutions, whenever it is possible. The efficiency and robustness of the proposed method demonstrated throughout all the assessments, illustrating that MITC elements are the natural choice to avoid shear locking and showing an unprecedent accuracy in the computation of transverse shear stresses for beam formulations.  相似文献   

2.
Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.  相似文献   

3.
Abstract

The capabilities and limitations of refined two-dimensional (2D) composite plate elements are discussed with respect to the stress concentration problem occurring at traction-free edges. Classical displacement-based and advanced partially mixed finite elements are formulated according to Carrera’s Unified Formulation (CUF). Rectangular laminates are analyzed under extension and bending loading, where the attention is focused on the local stress response at the free edges. Present results are compared with reference results available in the literature and a 3D finite element model. A power law representation for a singular stress field is used to fit the obtained stresses in the vicinity of the free edge, and the parameters are used to assess the CUF elements and to compare the free-edge effect occurring in extension and bending.  相似文献   

4.
In this study three-dimensional elastic stress state of an adhesively bonded single lap joint with functionally graded adherends in tension was investigated. The adherends compose of a functionally gradient layer between a pure ceramic (Al2O3) layer and a pure metal (Ni) layer. Stress concentrations are observed along the free edges of the adhesive layer and through the corresponding zones in the upper and lower adherends. The adhesive layer experiences stress concentrations along the left and right free edges in the horizontal plane, and the normal stresses and the shear stress σxy are critical. Whereas the middle overlap region has a uniform low stress distribution the zones in the upper adherend corresponding to the left free edge of the adhesive layer and the zones in the lower adherend corresponding to the right free edge of the adhesive layer are subjected to higher stresses. The normal stress σxx among the normal stresses and the shear stress σxy among the shear stresses are dominant in both upper and lower adherends. The normal stress σxx changes uniformly from compression in the ceramic layer to tension in the metal layer through the upper plate-thickness and from tension in the ceramic layer to compression in the metal layer through the lower plate-thickness. In the adhesive layer, the normal stress σyy becomes peak at the left free edge of the upper adherend–adhesive interface and at the right free edge of the lower adherend–adhesive interface and then decreases uniformly across the adhesive layer towards the other adherend–adhesive interface. The functionally gradient region across the adherend thickness was modelled using the layers with the mechanical properties calculated based on the power law. However, a layer number larger than 20 has a minor effect on the through-thickness profiles and magnitudes of von Mises and normal stresses in both the adherends and the adhesive. In addition, increasing the ceramic phase in the material composition (compositional gradient exponent n) of the functionally gradient region does not affect the through-thickness profiles of von Mises and normal stresses in the adherends and adhesive whereas their magnitudes in the ceramic rich layer of both adherends and along the adherend–adhesive interfaces increase considerably. On the contrary, the layer number and compositional gradient exponent have an evident effect on the through-thickness profiles and magnitudes of the critical stress components in the adherends and adhesive layer of the functionally graded adhesively bonded joints.  相似文献   

5.
A geometrically nonlinear, two-dimensional (2D) finite element analysis has been performed to determine the stress and strain distributions across the adhesive bond thickness of composite single-lap joints. The results of simulations for 0.13 and 0.26 mm bond thickness are presented. Using 2-element and 6-element mesh schemes to analyze the thinner bond layer, good agreement is found with the experimental results of Tsai and Morton. Further mesh refinement using a 10-element analysis for the thicker bond has shown that both the tensile peel and shear stresses at the bond free edges change significantly across the adhesive thickness. Both stresses became increasingly higher with distance from the centerline and peak near but not along the adherend–adhesive interface. Moreover, the maximum shear and peel stresses occur near the overlap joint corner ends, suggesting that cohesive crack initiation is most likely to occur at the corners. The dependence of stress and corresponding strain distributions on bond thickness and adhesive elastic modulus are also presented. It is observed that the peak shear and peel stresses increase with the bond thickness and elastic modulus.  相似文献   

6.
Abstract

In this study, the shear strength of a nanocomposite adhesive was experimentally and numerically investigated under ambient temperature and thermal cycling conditions. This study used the Thick Adherend Shear Test method, which is commonly used to determine the shear stress–displacement of adhesives. Shear–displacement was determined by an extensometer to accurately compare results obtained from the Thick Adherend Shear Test results for joints with numerical analyses. As a result, when the shear failure load obtained from experiments was examined, the nanocomposite adhesives, obtained by adding a nanostructure into the adhesive, improved both the ambient temperature and thermal cycling performances of the joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号