首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
As one of the most promising candidates, graphene exhibits a potential application in post-silicon nanoelectronics. However, it is a key issue to produce high-quality graphene in large scale. Here, a facile method is demonstrated to produce graphene dispersions by exfoliation of expanded graphite in the co-solvent with N,N-dimethylformamide (DMF) and water. We confirm that the optimal ratio of DMF to water for graphene exfoliation is 9:1 (v:v) by means of UV–Vis absorption spectra. This exfoliation results in large flakes ∼2 μm in diameter, which can potentially be improved by adjusting the sonication power. The relatively perfect hexagonal structure of graphene is confirmed by Raman spectroscopy and the as-prepared graphene nanosheet film the as-prepared graphene nanosheet film possesses good electrical conductivity (∼8.3 × 103 S m−1). DC electrical transport phenomena for the deposited film of graphene nanosheets are well described in terms of conduction models for non-crystal semiconductor. This convenient approach provides an extensive route to prepare high-quality graphene nanosheets.  相似文献   

2.
A method is demonstrated to prepare graphene dispersions at high concentrations, up to 1.2 mg mL?1, with yields of up to 4 wt% monolayers. This process relies on low‐power sonication for long times, up to 460 h. Transmission electron microscopy shows the sonication to reduce the flake size, with flake dimensions scaling as t?1/2. However, the mean flake length remains above 1 µm for all sonication times studied. Raman spectroscopy shows defects are introduced by the sonication process. However, detailed analysis suggests that predominately edge, rather than basal‐plane, defects are introduced. These dispersions are used to prepare high‐quality free‐standing graphene films. The dispersions can be heavily diluted by water without sedimentation or aggregation. This method facilitates graphene processing for a range of applications.  相似文献   

3.
In this study, graphene was synthesized from graphite. Graphite was oxidized via modified Hummer’s method and sonicated to form graphene oxide (GO). Infrared spectroscopy revealed the successful oxidation of graphite by the emergence of oxygen functionalities. The spectrum of GO showed peaks at 3270, 1629, 1227 and 1096 cm?1, indicating O–H, C=O, C–OH and C–O–C functional groups, respectively. Graphene hydrogels were prepared by the addition of L-ascorbic acid to GO suspensions and subsequent heating at 90°C. Composite hydrogels of graphene and titanium (IV) oxide (TiO2) were synthesized with various TiO2 to GO mass ratios. Composites were applied to photocatalytic hydrogen evolution reaction (HER) and the hydrogen gas produced was analysed by gas chromatography with thermal conductivity detector. Highest HER yield was 66.00% H2.  相似文献   

4.
We demonstrate a new approach to tune the electrical properties of graphene and functionalized graphene. Graphene was synthesized using thermal chemical vapour deposition(TCVD) method on copper foil using precursor gas acetylene and co-catalyst H2 gas. TCVD assisted graphene was successfully transferred onto a silicon wafer. Transferred graphene sheet was then functionalized to prepare graphene oxide(GO) and reduced graphene oxide(rGO). Different surface charge carbon nanoparticles, e.g. carbon nanoparticle with net positive charge and carbon nanoparticle with net negative charge were then immobilized on transferred graphene and functionalized graphene sheets. The functionalized graphene and charge mobilized functionalized graphene were characterized by Uv–vis spectroscopy,Fourier transformed infrared spectroscopy, scanning electron microscopy, and Raman spectroscopy. After immobilization of carbon nanomaterials, the ac electrical conductivity was found to increase due to enhancement of the surface charge, electron density, and mobility. It was observed that negative surface charge immobilized graphene and functionalized graphene show higher conductivity. Thus, the electrical property of graphene and functionalized graphene can be tuned by surface modification with different surface charge carbon nanomaterials.  相似文献   

5.
Nanostructured graphene electrodes generally have a low density, which can limit the volumetric performance for energy storage devices. The liquid‐phase mild reduction process of graphene oxide sheets is combined with the continuous aerosol densification process to produce high‐density graphene agglomerates in the form of microspheres. The produced graphene assembly shows the cabbage‐like morphology with a high density of 0.75 g cm?3. In spite of such high density, the cabbage‐like graphene microspheres have narrow‐ranged mesopores and a high surface area. The cabbage‐like graphene microsphere exhibits both high gravimetric and volumetric energy densities due to the optimized microstructure, which shows a high gravimetric capacitance of 177 F g?1 and volumetric capacitance of 117 F cm?3 in supercapacitors. As a cathode for lithium‐ion capacitors, the cabbage‐like graphene delivers a reversible capacity of ≈176 mAh g?1. The stacking‐control approach provides a new pathway to control the microstructure of the graphene assembly and corresponding charge storage characteristics for energy storage applications.  相似文献   

6.
Graphene has superior electrical conductivity than graphite and other allotropes of carbon because of its high surface area and chemical tolerance. Electrochemically processed graphene sheets were obtained through the reduction of graphene oxide from hydrazine hydrate. The prepared samples were heated to different temperatures such as 673 and 873 K. X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), Raman spectra and conductivity measurements were made for as-prepared and heat-treated graphene samples. XRD pattern of graphene shows a sharp and intensive peak centred at a diffraction angle (2θ) of 26·350. FTIR spectra of as-prepared and heated graphene were used to confirm the oxidation of graphite. TEM results indicated that the defect density and number of layers of graphene sheets were varied with heating temperature. The hexagonal sheet morphology and purity of as-prepared and heat treated samples were confirmed by SEM–EDX and Raman spectroscopy. The conductivity measurements revealed that the conductivity of graphene was decreased with an increase in heating temperature. The present study explains that graphene with enhanced functional properties can be achieved from the as-prepared sample.  相似文献   

7.
We have demonstrated a fast, versatile, and scalable approach to synthesize high-quality few layer graphene sheets with low defect ratio and high crystallinity produced from exfoliation of graphite flakes in DMF by using probe sonication. The effect of sonication time on degree of exfoliation and number of graphene layers has been fully investigated. The degree of exfoliation of graphene sheets as a function of sonication time has been successfully analyzed by XRD, UV-Vis spectroscopy, TEM, and BET studies. The morphological changes at different sonication times have also been observed by SEM. A structural and defect characterization of graphene sheets has been discussed in detail by Raman spectroscopic technique. The shift in position of 2D Raman band and its de-convolution provided information about formation of multi to few layer graphene sheets with sonication. Moreover, Raman results are highly consistent with TEM studies as per number of graphene layers is concerned.  相似文献   

8.
A facile in-situ chemical reduction and self-assembly method was developed to prepare graphene and tin oxide (graphene@SnO2) composite fibers. The obtained graphene@SnO2 fiber exhibits excellent tensile mechanical performance with high mechanical strength and superior plastic deformation (mechanical strength up to 65 MPa with an ultimate elongation about 7%). The electrical resistance of the graphene@SnO2 fiber holds steady and has a negligible change in either the bent or straight status over 100 cycles. In the prepared composite fibers, SnO2 nanoparticles with sizes of 3–5 nm homogeneously dispersed on the graphene sheets. The conductivity of GF@SnO2 was about 6.0–2.5 S/cm with the increase content of Sn4+ due to the tin oxide semiconductor doping.  相似文献   

9.
A facile and high‐yield approach to the preparation of few‐layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage‐1 H2SO4‐graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (<7 layers) with large lateral sizes (tens of microns) is more than 75% relative to the total amount of starting expanded graphite. A low degree of oxygen functionalization existing in the prepared FLG flakes enables them to disperse effectively, which contributes to the film‐forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24 500 S m?1). Three‐dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self‐sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g?1 at a current density of 0.5 A g?1, retaining 90% capacitance after 1000 cycles.  相似文献   

10.
In this work, 3D graphene structures constructed by graphene foam (GF) were introduced into polyamide-6 (PA6) matrix for the purpose of enhancing the thermal-conductive and anti-dripping properties of PA6 composites. The GF were prepared by one-step hydrothermal method. The PA6 composites were synthesized by in-situ thermal polycondensation method to realize PA6 chains covalently grafted onto the graphene sheets. The 3D interconnected graphene structure favored the formation of the consecutive thermal conductive paths or networks even at relatively low graphene loadings. As a result, the thermal conductivity was improved by 300% to 0.847 W·m−1·K−1 of PA6 composites at 2.0 wt% graphene loading from 0.210 W·m−1·K−1 of pure PA6 matrix. The presence of self-supported 3D structure alone with the covalently-grafted PA6 chains endowed the PA6 composites good anti-dripping properties.  相似文献   

11.
The Graphene nanosheets/SnO2 composites were synthesized using stannous chloride to restore the semi-reduction graphene oxide (SRGO) under a simple hydrothermal reduction procedure. First graphene oxide was pre-reduced by glucose for a certain time to get SRGO, which keeps the good water-solubility of graphite oxide (GO) and has a good conductivity like graphene nanosheets. The higher electrostatic attraction between SRGO and Sn2+ makes SnO2 nanoparticles tightly anchor on the graphene sheets in the hydrothermal reduction process. The formation mechanism of the composite was investigated by SEM, TEM, XRD, AFM and Raman. Moreover, the electrochemical behaviors of the Graphene nanosheets/SnO2 nanocomposites were studied by cyclic voltammogram, electrical impedance spectroscopy (EIS) and chronopotentiometry. Results showed that the Graphene nanosheets/SnO2 composites have excellent supercapacitor performances: the specific capacitance reached 368 F g−1 at a current density of 5 mA cm−2, and the energy density was much improved to 184 Wh kg−1 with a power density of 16 kW kg−1, and capacity retention was more than 95% after cycling 500 cycles with a constant current density of 50 mA cm−2. The experimental results and the thorough analysis described in this work not only provide a potential electrode material for supercapacitors but also give us a new way to solve the reunification of the graphene sheets.  相似文献   

12.
A facile and cost-effective method which combines supercritical CO2 and micro-jet exfoliation has been developed for producing graphene nanosheets with high-quality. CO2 molecules can intercalate into the interlayer of graphite because of their high diffusivity and small molecule size in supercritical operation. The tensile stress induced by graphite interfacial reflection of compressive waves exert on the graphite flakes, which lead to further exfoliation of graphite. Scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM), Raman spectrum and X-ray diffraction (XRD) are used to identify morphology and quality of the exfoliated graphene nanosheets, which reveal that the graphite was successfully exfoliated into graphene and more than 88% of graphene nanosheets are less than three layers. The yield of graphene nanosheets is about 28 wt% under optimum conditions, which can be greatly improved by repeated exfoliation of the graphene sediment. The pure graphene film has a high conductivity of 2.1 × 105 S/m.  相似文献   

13.
Nacre‐like graphene films are prepared by evaporation‐induced assembly of graphene oxide dispersions containing small amounts of cellulose nanocrystal (CNC), followed by chemical reduction with hydroiodic acid. CNC induces the formation of wrinkles on graphene sheets, greatly enhancing the mechanical properties of the resultant graphene films. The graphene films deliver an ultrahigh tensile strength of 765 ± 43 MPa (up to 800 MPa in some cases), a large failure strain of 6.22 ± 0.19%, and a superior toughness of 15.64 ± 2.20 MJ m?3, as well as a high electrical conductivity of 1105 ± 17 S cm?1. They have a great potential for applications in flexible electronics because of their combined excellent mechanical and electrical properties.  相似文献   

14.
L-半胱氨酸还原氧化石墨烯的研究   总被引:2,自引:1,他引:1  
采用改进Hummers法合成氧化石墨,在水中超声分散获得氧化石墨烯水溶胶,并加入L-半胱氨酸于95℃进行回流反应后得到还原氧化石墨烯。采用X射线衍射仪、傅里叶变换红外光谱仪和热重-差热扫描仪等探讨氧化石墨烯还原前后的结构与性能变化。结果表明,L-半胱氨酸能有效还原氧化石墨烯,且还原后的氧化石墨烯在乙醇中有较好的分散性,其所制薄膜的导电率为500S/m。由此法制备的石墨烯有望广泛应用于电子、光电、电容器和传感器等器件中。  相似文献   

15.
Al(OH)3 functionalized graphene composites (Al–GO) were prepared using a simple sol–gel method. In this protocol, graphene oxide (GO) was prepared according to the Hummers method and functionalized to enhance its reactivity with aluminum isopropoxide by a LiAlH4 treatment. The functionalized graphene sheets were characterized by X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. These analyses confirmed that GO had been fabricated and the Al(OH)3 layer could have a homogeneous distribution with large and dense coverage onto GO sheets. In addition, the thermal and electrical conductivity of the epoxy composites with GO and Al–GO fillers were measured. The thermal conductivities of the composites with graphene-based fillers were enhanced by the addition of fillers. In particular, the thermal conductivity of GO/epoxy composite containing 3 wt% was approximately two times higher than that of pure epoxy resin. In addition, the electrical conductivity of Al–GO embedded composites degenerated compared to GO composites.  相似文献   

16.
Ag2S–Graphene nanocomposite was prepared via a relatively facile hydrothermal method, using a single-source molecular (silver diethyldithiocarbamate [Ag(DDTC)]) as precursor and graphene sheets as a support material. The composite was characterized by X-ray power diffraction, X-ray photoelectron spectroscopy, Field-emission scanning electron microscope, transmission electron microscopy, Fourier transform infrared, Raman spectra and fluorescence spectroscopy. The experimental results show that the Ag2S–Graphene nanocomposite displays surface-enhanced Raman scattering (SERS) activity for graphene oxide and reveals relatively better fluorescence property compared with pure Ag2S.  相似文献   

17.
Thermally expanded graphite was functionalized with 4-bromophenyl addends using the in situ diazonium formation procedure, and after mild sonication treatment in N,N′-dimethylformamide, thin graphene layers were exfoliated from the bulk graphite. These chemically-assisted exfoliated graphene (CEG) sheets had higher solubility than pristine graphene without any stabilizer additive. More than 70% of these soluble flakes had less than 5 layers. Energy filtered transmission electron microscopy (EFTEM) elemental mapping provided evidence of the edge-selective diazonium functionalization with graphene. A majority of the Br signals came from the edges of the CEG indicating that the basal planes were not highly functionalized. The CEG was also characterized by X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, and transmission electron microscopy.  相似文献   

18.
This article presents a novel and simple method of liquid-phase exfoliation to fabricate graphene films that possess high conductivity and good light transparency. Graphite was exfoliated in water–ethanol mixture, with the aid of Nafion, to give highly stable graphene dispersion. Transparent graphene thin films were easily deposited by vacuum filtration from the Nafion-stabilized graphene dispersion. More important, low-temperature air-annealing (at 250 °C for 2 h) was employed to treat freshly-prepared graphene films for the first time. It demonstrates that the technique is advantageous and quite efficient for the fabrication of exfoliated graphite films with defect-free structure and high purity, confirmed by TEM, SEM, FTIR, XPS, and Raman spectra. The resulting graphene films possess a sheet resistance lower than 2.86 kΩ sq−1 and optical transmittance over 84% at a typical wavelength of 550 nm.  相似文献   

19.
Graphene, Carbon Nanotubes and their hybrids are receiving considerable attention in energy storage devices due to their unique properties. The present study reports the synthesis of Graphene–Carbon Nanotube hybrid having variable ratios of the constituting nanomaterials by employing two different chemical routes to explore their potential in energy storage devices. To study the structure and morphology of synthesized nanomaterials, all samples were characterized by high resolution imaging and spectroscopy techniques. Electrical conductivity of synthesized Graphene-Carbon Nanotube hybrid, graphene oxide and carbon nanotubes was measured by two probe method to study whether the conductivity of hybrid is greater than that of graphene and carbon nanotubes. It was observed that hybrid exhibited excellent stability due to strong π-π interaction between carbon nanotubes and graphene oxide sheets. The maximum electrical conductivity was obtained for the hybrid in which amount of graphene oxide was more than that of multiwalled carbon nanotubes. Moreover, the results of electrical conductivity demonstrated that the structure of hybrid plays significant role in improving its properties.  相似文献   

20.
The preparation of graphene oxide (GO) sheets with specified size was developed by simply controlling the time of ultrasonication to the large-size GO (LGO) sheets. The LGO sheets were synthesized by choosing large parent graphite, mild oxidation condition and a two-step centrifugation. The different-sized GO samples prepared under different ultrasonication times, are characterized by Scanning electron microscopy, X-ray photoelectron spectroscopy, Ultraviolet–visible spectroscopy, and X-ray diffraction. It is found that the size of the GO sheets, which has a Gaussian distribution, decreases from 231 to 17 μm2 as the ultrasonication time increases. Moreover, the ultrasonication not only can exfoliate and break GO sheets, but also increase the oxidation degree of GO sheets, especially when the GO sheets have a weak oxidation degree. It is reasonable to believe that the size of GO sheets is closely correlated to the C–O content, which enables the size of GO sheets to be controlled. Our work demonstrates that ultrasonication is an important method to control the size and the oxidation degree of GO sheets, to a certain extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号