首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polymeric composites disadvantages in terms of high price and non-recoverability make them unsuitable for some applications. Otherwise, natural fibers would be degraded easily and their prices are much lower as compared with most of the commonly used synthetic fibers, especially in composite manufacturing. Hollow Milkweed fiber with non-crimped nature is a known natural fiber which could have high potential to be used as composites reinforcements due to its low-density property. Increasing demand for natural fiber-reinforced composites as well as unique characteristics of Milkweed fibers reveal the need to study the mechanical properties of such fiber-reinforced composites. In this study, milkweed fibers were initially fed to laboratory carding machine in order to be formed as a nonwoven layer which was then applied to a low-velocity needle-punching operation. Surface modifications were carried out on the needle-punched nonwovens using 5% NaOH at 50–60 °C and three different treating time levels (30, 60 and 90 min). The produced nonwovens were then treated in a mixture of boiling water and detergent for 1 h. For making composite parts, the modified nonwovens were impregnated in Ploy vinyl acetate (PVAc) resin using the hand-layup method. The alkali treatment effects regarding the process time period on mechanical properties of the natural-reinforced composites were investigated. The findings suggested significant affectability of the composites mechanical properties by varying the time of alkali treatment, NaOH concentration as well as the type of surface modification process which are all mainly resulted in improving the interaction between fibers and matrix phase.  相似文献   

2.
ABSTRACT

The current research endeavor, explores the thermal, mechanical, and degradation behavior of alkaline treated banana fibers reinforced polypropylene composites. Composites incorporating BF (20% w: w) treated with NaOH (5% w: v) aqueous solution were developed using extrusion-injection molding processes. After chemical treatment, the tensile, flexural and impact strength of the composite increases by 3.8%, 5.17%, and 11.50%, respectively. Scanning electron microscope (SEM) observations of tested specimens confirm the fiber pull out and fiber fracture as the main reasons for failure of developed composites under tensile and impact loading. The specimens were exposed to two different environments, water immersion and soil burial for 5 weeks for the degradation studies. The degradation behavior of composites was measured in terms of variation in weight and mechanical properties (tensile, flexural, and impact). The maximum degradation in mechanical properties was observed for the composites buried under soil. The composite lost 7.69%, 12.06%, and 3.27% of tensile, flexural, and impact strength, respectively.  相似文献   

3.
ABSTRACT

Mechanical (flexural, hardness, and impact) properties and interfacial adhesion of acetic anhydride (AC) and ethylene diamine tetraacetic acid (EDTA) treated Cissus populnea fiber-unsaturated polyester (UPR) composites was investigated because of poor durability of the natural fiber-UPR composite applications. UPR composites were prepared with untreated and optimally treated fiber using hand-lay-up technique. Optimization of mechanical properties and interfacial adhesion between the fiber and UPR were determined using response surface methodology and fiber pull-out method, respectively. AC and EDTA treated fibers improved the flexural and hardness properties and interfacial adhesion at reduced impact strength. This is corroborated with morphology of the composites.  相似文献   

4.
ABSTRACT

Due to the abundance of vegetable fibers from the large variety of existing plant types, many of them have not yet been explored in terms of mechanical behavior as composite reinforcements. Most of the natural fibers composites are based in a few crop fibers leaving a large number of species without a comprehensive study. This work evaluates the tensile strength of fibers from Phormium cookianum. Scanning electron microscopy images were taken on the fiber surface after the mercerization process, as well as in the composite. Through these results, it can be identified that the damage caused to the surface of the fibers may directly influence the adhesion that occurs at the interface with the polymer. In general, the composites produced here have good mechanical properties with a low cost of production. On this basis, this product has the potential to replace panels, boards, injection and molded parts.  相似文献   

5.
ABSTRACT

The natural fibers and their specific properties attracted researchers in the recent years for the development of new polymer composites. In this way, the Crotalaria juncea L. (Sunnhemp) fiber was identified as a potential material for reinforcement and the preparation of polyester-based polymer matrix composites was carried out. The present investigation was focused on fabrication of untreated and alkaline-treated C. juncea L. (Sunnhemp)–polyester composite laminates and the evaluation of tensile, flexural, impact, and hardness properties as per ASTM. The different kinds of fiber orientations such as random, continuous, biaxial, and triaxial were considered and the properties were evaluated.  相似文献   

6.
Natural fiber-reinforced polyester composites were prepared using bast fibers as the reinforcement which were extracted from Grewia serrulata trees. Chemical treatments such as alkali pretreatment followed by permanganate treatment, acetylation and silane treatment were exclusively applied to modify the fiber surface. Hand lay-up technique with compression molding was adapted for the fabrication of axially oriented fiber reinforced composites. Tensile, flexural and impact strength properties of the specimens prepared were evaluated following the standard procedures. The SEM images of the fractured surfaces shows improvement in compatibility between the chemically treated fibers and the matrix. It was found that the tensile and flexural strengths of chemically treated fiber-reinforced polyester composites have significantly improved when compared to untreated fiber-reinforced polyester specimens. The properties of 1200 hrs water aged specimens were found deteriorated considerably due to diffusion of water into the composite material system. The chemical treatment of fibers prior to fabrication of composites improves the resistance to water absorption tendencies.  相似文献   

7.
ABSTRACT

Banana short fiber/Al(OH)3/epoxy composite laminates were prepared by dispersing short banana fiber and Al(OH)3 particulates in an epoxy matrix and investigated for their specific wear rate, water intake, flammability and mechanical properties. The sliding wear results showed that due to the synergistic effect of both fiber and filler in epoxy matrix enhanced the wear resistant in the composites. Similarly, the tensile stress and hardness improved significantly due to the addition of banana fiber in the composite material. Also, it is found that the composite becomes more fire resistant due to the addition of Al(OH)3. However, the higher percentage of fiber and filler increases the water absorption rate due to voids in the composite. The results of this study provide the insights of solid–solid interface leading to different bulk properties.  相似文献   

8.
Hybrid composites are fabricated by the combination of two or more fibers using a single matrix. It can be fabricated either with all of its constituents as natural fibers or with one or more constituents belonging to artificial fiber. The stacking sequence of the fibers in a hybrid composite can be altered resulting in a varying mechanical properties. In the present study the MWCNT filled banana-jute-flax fiber reinforced composites are investigated for its mechanical behavior by varying the stacking sequence of the fiber layers and weight % of Multi-Walled Carbon Nano Tube (MWCNT). A Modified resin was prepared by adding MWCNT in the epoxy resin using ultrasonic probe sonicator and a hybrid composite is fabricated with it by using compression moulding processes. The mechanical properties are evaluated as per the ASTM standards. The incorporating of MWCNT and the stacking sequence of fiber layers shows the greater impact on the mechanical properties. The composites of jute fibers at the extremities (JBFBFBFJ) exhibiting the enhancement of tensile, compressive and hardness properties than the flax fiber at the extremities (FBJBJBJF) and it could be used in various automobile applications. Microstructure of the samples are investigated by Scanning Electron Microscope (SEM)with Energy dispersive X-ray (EDS). The results indicate that increasing the weight % of MWCNT and varying the stacking sequence of fibers improves the mechanical properties of hybrid natural fiber composites.  相似文献   

9.
Composite reinforcement is defined as a technique to improve the engineering characteristics of composite and a fiber reinforced composite (FRC) is a composite material consisting of a polymer matrix imbedded with high-strength fibers, synthetic fibers or natural fibers. Natural fibers have recently become attractive to researchers, engineers, and scientists as an alternative reinforcement for FRCs. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nanoreinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to investigate natural fiber/nanofiller-based hybrid composite with specific concern to their physical and mechanical properties.  相似文献   

10.
Polysulfonamide/nano titanium dioxide (PSA/nano-TiO2) composite spinning solutions with various nano-TiO2 mass fractions were prepared using the solution blending method. The corresponding composite fibers were developed by wet-spinning technology and the composite membranes were prepared using the digital spin-coating technique. The properties of PSA/nano-TiO2 composite fibers and membranes were investigated by scanning electron microscope, Fourier transform infrared spectroscopy and X-ray diffraction, etc. The effects of nano-TiO2 and its mass fractions on the mechanical properties, thermal stability and ultraviolet resistance of PSA composites were also analyzed. The experimental results showed that nano-TiO2 with low mass fractions can be dispersed evenly in the PSA matrix; the blending of nano-TiO2 had no obvious influence on the molecular structure and the chemical composition of PSA fiber; the crystallization in PSA fiber was promoted at low nanoparticles mass fractions because it can act as a nucleation agent; the mechanical properties and the thermal stability of PSA/nano-TiO2 composites can be enhanced obviously by blending nano-TiO2 into PSA matrix. The ultraviolet resistance of PSA composites can be improved significantly with the increasing nano-TiO2 mass fractions and the 7 wt.% specimen showed the lowest UV transmittance.  相似文献   

11.
As a high-performance material for preparing composite materials, polyimide fibers suffer from many potential drawbacks, including poor bonding with other substrates, which results in composite materials with poor mechanical properties. Therefore, this study proposed a simple and rapid technique for obtaining loose, porous polyimide fiber papers by implementing a wet method using equal amounts of polyimide fiber and polyimide fiber paper as reinforcements, respectively. The polyimide resin-based composite materials were prepared by hand lay-up and hot pressing. The results showed that the paper-based reinforcement exhibited high porosity and the fibers were arranged with a uniform pore size distribution. The tensile properties, bending performance, and interlaminar shear performance of the paper-based composite improved by 130%, 108%, and 34.5%, respectively, compared to those of the fiber-based counterpart. The factors affecting the mechanical properties of the composites were analyzed based on the fiber length, fiber beating or lack thereof, and the basis weight of the paper. The increased uniformity of the polyimide fiber paper changed the ordering of the fibers and resolved drawbacks such as difficult dispersion, uneven pore size distribution, and poor mechanical properties related to single fibers in the resin-based composite material.  相似文献   

12.
ABSTRACT

Fiber size aspect ratio is known to impact the mechanical and reinforcement properties of natural fiber-based composites. However, the representation of fiber diameter change occurring during the extrusion process is controversial compared to the length. Fiber elements undergo multidirectional stresses and complex interactions within the extruder, leading to their breakage, which consequently may modulate their reinforcing properties. To better understand these mechanisms, short fiber reinforced polymer composites were prepared from flax fibers and polypropylene matrix (PP) by melt mixing. Five sampling zones were selected along the screws, both in screw conveying elements and inside blocks of kneading discs. X-ray computed micro-tomography, and 3D images analysis were then used for monitoring sample diameter distributions along the screw profile, according to specific twin-screw compounding conditions. The effects of the considered processing condition on fiber bundle diameters decrease along the screw profile are quantified.  相似文献   

13.
ABSTRACT

The increasing demand for high performance and lightweight materials has stimulated the development of alternative materials, namely fiber metal laminates (FMLs). FML is a sandwich structure which is formed by bonding the metallic layers with composite as core constituent using an adhesive agent. In this study, the mechanical behavior of FMLs with the core constituents of environmental friendly kenaf bast fiber reinforced polypropylene composites bonded with aluminum skin layers was investigated. The effects of fiber compositions (50, 60, and 70 wt.%), fiber lengths (30, 60, 90 mm), and alkali treatment on the mechanical responses of FML were investigated. The overall results revealed that the increase of fiber composition and fiber length reduces the mechanical strength of FML owing to the agglomeration of natural fibers when the fiber length exceeds the critical limit. However, the chemical treated kenaf bast fiber reinforced FML showed a significant enhancement of the mechanical properties in comparison to the non-treated fiber reinforced FML owing to the improved fiber-matrix adhesion level.  相似文献   

14.
The action of water in natural fiber-reinforced composite material was studied so as to produce great swelling with resultant changes in the fine structure, dimensional stability, and mechanical properties. Water absorption and thickness swelling test reveal that hybrid composite shows water absorption moderately, which is 15.3% for hybrid coir/jute/coir composite and 11.2% for hybrid jute/coir/jute composite. The thickness swelling, water absorption, and mechanical properties of the hybrid composites slightly increased as the layering pattern of hybrid composites changed. Hybridization of coir fibers composites with jute fibers can improve the dimensional stability, extensibility and density of pure coir composites. Microstructures of the composites were examined to understand the mechanisms for the fiber-matrix interaction in relation to mechanical properties.  相似文献   

15.
ABSTRACT

This study investigates and compares mechanical factor (a dimensionless parameter and defined as the ratio of the compressive strength of fiber reinforced soil to that of unreinforced soil) for soils reinforced with four different fibers (three natural fibers and one synthetic fiber). An integrated methodology was utilized, including 351 laboratory experiments for obtaining data and Extreme Learning Machine (ELM) technique for developing functional relationships between mechanical factor and soil and fiber parameters. Soils reinforced with synthetic fiber (Polypropylene) and with natural fibers exhibited different characteristics when subjected to the same variation in soil parameters. This phenomenon can be attributed to the differences in surface morphology and water absorption capability of Polypropylene comparative to other natural fibers. Polypropylene–soil composite shows the maximum sensitivity to the soil moisture. It also shows the least sensitivity toward soil density and fiber content among all tested fiber–soil composites.  相似文献   

16.
Agricultural crops from plantain produce a significant amount of wastes and they are currently considered worthless. Accordingly, in this study, non-wood fibers from pseudostem of plantain plants were extracted through mechanical processing to be used as reinforcing material in polyester composites. Bio-based composites were obtained using a 4% wt. of lignocellulosic reinforcement and were prepared after the fibers underwent alkaline and acetylation treatments in order to enhance the compatibility of organic loads with the polyester matrix. The higher cellulose content of plantain fibers indicates that they can be used to reinforce composites with a polymeric matrix. The plantain fibers have bast fiber bundle of around 120 µm; single fibers of around 5 µm; and mesofibers with a diameter between 0.5 and 1 µm. The results showed that plantain fibers can be used as a filler material to obtain an alternative polymer composite. The flexural strength of composites (polyester with acetylated plantain fibers) was improved 28% when the properties are compared to control composite.  相似文献   

17.
The use of natural resources for the production of nanostructured cellulosic films of high quality could reduce pollution and raw material costs for cellulose industry. This work provides innovative information about the use of Amazonian species not explored in studies involving the production of nanostructured films, as well as the evaluation of important characteristics that may be decisive for the destination of the product. The aim of this study was to modify Schizolobium parahyba var. amazonicum (paricá) waste fibers through alkaline (NaOH) and bleaching (NaClO2) treatments for cellulose nanofibrils (CNFs) production and evaluate the characteristics of the nanofibrils and the surface as well as the mechanical resistance of the films obtained. The alkaline treatment was carried out with sodium hydroxide (5% NaOH solution (w/v); 2 h), while the bleaching was performed using sodium chlorite and glacial acetic acid (1.5 g NaClO2; 10 drops of glacial acetic acid; 1 h). The treatments were performed in sequence, producing nanofibrils after alkaline treatment and after bleaching. Lignin content did not change with the alkaline treatment, but it significantly decreased with bleaching (from 26.1 to 6.8%). Hemicelluloses content decreased with the sequence of treatments. FTIR results showed that the mechanical defibrillation caused disruption of the fiber bonds. The temperature of thermal degradation observed in DTG analysis increased from the natural fibers (243 °C) to alkaline?+?bleached fibers (255 °C). The defibrillation process led to higher thermal stability of the alkaline?+?bleached nanofibrils in comparison to fibers. Moreover, films were prepared from the obtained CNFs and evaluated by the mechanical properties and surface contact angle. The mechanical properties showed values of 6.93?±?0.18 GPa for modulus of elasticity (MOE) for the films produced from material which was submitted to the bleaching treatment. The results highlighted a more hydrophobic surface of the film produced with the CNFs generated from the bleached fibers. The results of mechanical properties showed the superiority of the films produced from the alkaline?+?bleached fibers.  相似文献   

18.
The aim of this study is to examine the impact of surface modification on properties of flax fiber and flax-reinforced composites. For this purpose, acetic anhydride, sodium hydroxide, and silane were used to treat surface of the flax fiber. The effects of treatments on fiber were investigated by using contact angle, attenuated total reflectance-Fourier transform infrared, atomic force microscopy (AFM), and scanning electron microscopy (SEM). Contact angle and AFM results revealed that sodium hydroxide-treated flax fibers have higher adhesion force on the fiber surface. Particularly, NaOH treatment improved the mechanical properties of the epoxy matrix composite.  相似文献   

19.
为充分发挥天然竹原纤维的可再生性和生物分解性,减少隔音复合材料对环境的负荷,并进一步改善竹原纤维/聚氨酯复合材料的隔音性能,以天然环保和可再生的竹原纤维为增强材料,以聚氨酯为基体,制备了一系列不同方式复合的隔音复合材料。研究了竹原纤维的排列方式与质量分数、及氢氧化钠溶液表面处理对复合材料隔音性能的影响。结果表明:竹原纤维采用直铺法制成的复合材料隔音性能最好;竹原纤维经氢氧化钠溶液处理后制成的复合材料其隔音性能显著提高;随着竹原纤维质量分数增加,复合材料的隔音性能增大。  相似文献   

20.
The aim of this paper is to explore the potential of oil palm frond fibers (OPFf) for technical applications such as composite reinforcement. For this purpose, fibers obtained from frond wastes were subjected to various chemical treatments with NaOH and chemically and morphologically characterized. Afterward, composites of poly-lactic acid matrix and nonwoven matts made with the treated and the untreated OPFf were prepared and the mechanical properties tested. It was found that the alkaline treatment was effective for increasing the wettability of the fibers leading to composites with a good-balanced between lightness and toughness for potential applications in packaging or automotive industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号