首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4-18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band.  相似文献   

2.
Polymer composites with electrically conductive fillers have been developed as mechanically flexible, easily processable electromagnetic interference (EMI) shielding materials. Although there are a few elastomeric composites with nanostructured silvers and carbon nanotubes showing moderate stretchability, their EMI shielding effectiveness (SE) deteriorates consistently with stretching. Here, a highly stretchable polymer composite embedded with a three-dimensional (3D) liquid-metal (LM) network exhibiting substantial increases of EMI SE when stretched is reported, which matches the EMI SE of metallic plates over an exceptionally broad frequency range of 2.65–40 GHz. The electrical conductivities achieved in the 3D LM composite are among the state-of-the-art in stretchable conductors under large mechanical deformations. With skin-like elastic compliance and toughness, the material provides a route to meet the demands for emerging soft and human-friendly electronics.  相似文献   

3.
Shi SL  Liang J 《Nanotechnology》2008,19(25):255707
Multi-wall carbon nanotubes (MWCNTs)-3?mol% yttria-stabilized zirconia (3Y-TZP) (MWCNTs-3Y-TZP) composite was prepared by spark plasma sintering. The complex permittivities of the composite have been measured in the Ku-band range (12.4-18?GHz) and it is found that both the real and imaginary permittivities of the composite increase with the increasing content of MWCNTs. The effect of the content of MWCNTs on the electromagnetic interference (EMI) shielding effectiveness (SE) of the composite has been evaluated, and it is found that the EMI SE of the composite increases with the increasing content of MWCNTs. An EMI SE value as high as 25-30?dB has been achieved in the Ku-band range for the composite with 9?wt% content of MWCNTs, indicating that the MWCNTs-3Y-TZP composite can be used as an effective EMI shielding material.  相似文献   

4.
We investigated the electromagnetic interference shielding effectiveness (EMI SE) of composites consisting of an unsaturated polyester matrix containing woven glass or carbon fibers that had been coated with multiwalled carbon nanotubes (MWCNTs). Composite panels consisting of fiber fabrics with various combinations of fabric type and stacking sequence were fabricated. Their EMI SE was measured in the frequency range of 30 MHz–1.5 GHz. The underlying physics governing the EMI shielding mechanisms of the materials, namely, absorption, reflection, and multiple reflections, was investigated and used in analytical models to predict the EMI SE. Simulation and experimental results showed that the contributions of reflection and absorption to EMI shielding is enhanced by sufficient impedance mismatching, while multiple reflections have a negative effect. For a given amount of MWCNTs in the glass-fiber–reinforced composite, coating the outermost, instead of intermediate, glass fiber plies with MWCNTs was found to maximize the conductivity and SE.  相似文献   

5.
通过多次重复先驱体浸渍裂解(PIP)工艺过程,改变材料的孔隙率和体密度,制备不同孔隙率的三维针刺碳/碳(C/C)复合材料,并研究了在8.2~12.4GHz频率范围内(X波段)不同孔隙率C/C复合材料的电磁屏蔽效能。结果表明:适当降低孔隙率有利于提高C/C复合材料的总电磁屏蔽效能和电磁吸收屏蔽效能,当开气孔率为33.4%时,C/C复合材料具有最大的电磁屏蔽效能(40dB),且电磁吸收屏蔽效能(30dB)远大于电磁反射屏蔽效能(12dB),是极具潜力的高吸收低反射电磁屏蔽材料。  相似文献   

6.
The metal-deposited poly(vinyl alcohol) (PVA) composite nanofibrous mats were fabricated by electrospinning and metal-deposition methods for electromagnetic interference (EMI) shielding applications. The metal-deposited nanofiber mats prepared with various metals (Cu, Ni, Ag), their different thicknesses, and different metal deposition systems composed of Cu and Ni were used for EMI shielding measurement. For the EMI SE measurement, a near-field antenna measurement system was used. The measurement of EMI SE was carried out at the frequency range from 0.5 to 18 GHz, and the electromagnetic parameters were measured. The experimental results showed that absorption was the major shielding mechanism and reflection was the secondary shielding mechanism. The effect of unique porous structure of the metal-deposited composite nanofibrous mats was also discussed.  相似文献   

7.
Using the polymer blending method, conductive materials and waterborne polyurethane (WPU) were mixed to fabricate conductive composite films for application in electromagnetic shielding. First, nitric acid was used to purify the multi-walled carbon nanotubes (MWCNT). Second, sodium dodecyl sulfate (SDS) was utilized to disperse the carbon nanotubes, and then they were mixed with 8 microm diameter and 2 mm long stainless steel fibers (SSF) in the WPU by the polymer blending method. Finally, the thickness of 0.25 mm of conductive composite film was fabricated by means of coating. According to the ASTM D4935-99 standard, a coaxial transmission line was used to measure the electromagnetic shielding effectiveness (EMSE) of conductive composite film within the range of 50 MHz approximately 3.0 GHz. Moreover, the influence of the prior and posterior dispersion of carbon nanotubes dispersed on electromagnetic shielding was dealt with in the paper. Results demonstrated that the conductive composite film, within 50 MHz approximately 3.0 GHz, fabricated by the 15 wt% of the multi-walled carbon nanotubes and 30 wt% of the stainless steel fibers can achieve the maximum of the electromagnetic shielding effectiveness, 34.86 dB, and its shielding effect, 99.9%.  相似文献   

8.
Electromagnetic interference shielding properties of carbon nanofiber- and multi-walled carbon nanotube-filled polystyrene composites were investigated in the frequency range of 8.2-12.4 GHz (X-band). It was observed that the shielding effectiveness of composites was frequency independent, and increased with the increase of carbon nanofiber or nanotube loading. At the same filler loading, multi-walled carbon nanotube-filled polystyrene composites exhibited higher shielding effectiveness compared to those filled with carbon nanofibers. In particular, carbon nanotubes were more effective than nanofibers in providing high EMI shielding at low filler loadings. The experimental data showed that the shielding effectiveness of the composite containing 7 wt% carbon nanotubes could reach more than 26 dB, implying that such a composite can be used as a potential electromagnetic interference shielding material. The dominant shielding mechanism of carbon nanotube-filled polystyrene composites was also discussed.  相似文献   

9.
The advent of graphene heralded by the recent studies on carbon based conducting polymer composites has been a motivation for the use of graphene as an electromagnetic interference (EMI) shielding material. One of the variants of graphene, graphene nanoribbon (GNR) shows remarkably different properties from graphene. The EMI shielding effectiveness of the composite material mainly depends on fillers’ intrinsic conductivity, dielectric constant and aspect ratio. We have synthesized graphene nanoribbon (GNR) – Polyaniline (PANI) – epoxy composite film for effective shielding material in the X-band frequency range of 8.2–12.4 (GHz). We have performed detailed studies of the EMI shielding effect and the performance of the composite and found that the composite shows ∼−40 dB shielding which is sufficient to shield more than 95% of the EM waves in X Band. We checked the shielding effectiveness of the composite film by varying the GNR percentage and the thickness of the film. The strength properties of the synthesized composited were also studied with a aim to have a material having both high strength and EMI shielding properties.  相似文献   

10.
《Composites》1991,22(6):451-455
The electromagnetic interference (EMI) shielding effectiveness of short carbon fibre-filled polychloroprene composites was studied in the frequency ranges 100 to 1000 MHz and 8 to 12 GHz. It was observed that, at a particular frequency, the shielding effectiveness increases with increasing loading of carbon fibre in the composite. Results show that 30 to 40 phr (parts per hundred parts of rubber) loading of fibre makes the rubber composite a potential EMI shielding material for use in the electronics industry.  相似文献   

11.

Multi-walled carbon nanotube buckypaper (BP) reinforced glass fiber–epoxy (GF/EP) composites were selected to fabricate electromagnetic interference (EMI) shielding and microwave absorbing materials. Six different composite configurations with 3.0 mm thick have been conceived and tested over the X-band (8.2–12.4 GHz). Flexible and low-density (0.29 g/cm3) BP provided a high specific EMI SE of 76 dB with controlled electrical conductivity. GF/EP/BP111 and GF/EP/BP101 composites possess EMI SE as high as of 50–60 dB, which can be attributed to the number of BP inserted and variation in the wave-transmitting layer of the laminates. Furthermore, the shielding mechanism was discussed and suggested that the absorption was the dominant contribution to EMI SE. GF/EP/BP110 laminate demonstrated suitable EMI performance (~?20 dB), whereas GF/EP/BP011 composite revealed excellent microwave performance, achieving an effective ? 10 dB bandwidth of 3.04 GHz and minimum reflection loss (RL) value of ? 21.16 dB at 10.37 GHz. On the basis of these results, GF/EP/BP composites prepared in this work have potential applications as both EMI shielding and microwave absorber materials given their facile preparation and lightweight use.

  相似文献   

12.
This work reported preparation of porous composites using a simple dip-coating method, and the fabricated composites containing hybrid carbon nanomaterials performed excellent electromagnetic interference (EMI) shielding properties. A commercial sponge was coated with silver nanoparticles before being dip-coated with graphene (GP)/ink, multi-wall carbon nanotubes (MWCNTs)/ink, or hybrid GP/MWCNTs/ink to form Ag/carbon nanomaterial hybrid composites, and then the composites were subjected to EMI measurements in the frequency range of 0.45–1.5 GHz. For comparison, the sponges without Ag nanoparticle coating were also prepared. Herein, we found an insignificant difference in EMI SE among the porous composites without Ag nanoparticle coating, and the maximum values of approximately 14.4 dB was attained. Interestingly, the hybrid composites with Ag nanoparticle coating exhibited maximum EMI shielding of 24.33 dB. Due to their porous structure, the EMI SE measurements showed that reflection dominates the EMI SE for all the sponge composites studied in this work.  相似文献   

13.
The extensive development of electronic systems and telecommunications has lead to major concerns regarding electromagnetic pollution. Motivated by environmental questions and by a wide variety of applications, the quest for materials with high efficiency to mitigate electromagnetic interferences (EMI) pollution has become a mainstream field of research. This paper reviews the state-of-the-art research in the design and characterization of polymer/carbon based composites as EMI shielding materials. After a brief introduction, in Section 1, the electromagnetic theory will be briefly discussed in Section 2 setting the foundations of the strategies to be employed to design efficient EMI shielding materials. These materials will be classified in the next section by the type of carbon fillers, involving carbon black, carbon fiber, carbon nanotubes and graphene. The importance of the dispersion method into the polymer matrix (melt-blending, solution processing, etc.) on the final material properties will be discussed. The combination of carbon fillers with other constituents such as metallic nanoparticles or conductive polymers will be the topic of Section 4. The final section will address advanced complex architectures that are currently studied to improve the performances of EMI materials and, in some cases, to impart additional properties such as thermal management and mechanical resistance. In all these studies, we will discuss the efficiency of the composites/devices to absorb and/or reflect the EMI radiation.  相似文献   

14.
Li N  Huang Y  Du F  He X  Lin X  Gao H  Ma Y  Li F  Chen Y  Eklund PC 《Nano letters》2006,6(6):1141-1145
Single-walled carbon nanotube (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI) shielding effectiveness (SE) of SWNTs. Our results indicate that SWNTs can be used as effective lightweight EMI shielding materials. Composites with greater than 20 dB shielding efficiency were obtained easily. EMI SE was tested in the frequency range of 10 MHz to 1.5 GHz, and the highest EMI shielding efficiency (SE) was obtained for 15 wt % SWNT, reaching 49 dB at 10 MHz and exhibiting 15-20 dB in the 500 MHz to 1.5 GHz range. The EMI SE was found to correlate with the dc conductivity, and this frequency range is found to be dominated by reflection. The effects of SWNT wall defects and aspect ratio on the EMI SE were also studied.  相似文献   

15.
A novel elastomer foamed nanocomposite has been developed with high electromagnetic dissipation and shielding properties. This light weight foamed fluorocarbon incorporates multi-walled carbon nanotubes at low loading concentrations to achieve levels of conductivity and energy shielding that surpass the requirements for electromagnetic static discharge (ESD) and electromagnetic interference (EMI) shielding. Foaming the elastomer reduces that weight by 30% with minimal impact on ESD or EMI characteristics. The percolation threshold is at about 2% carbon nanotubes and the saturation conductivity occurs at 8% carbon nanotubes by weight. Combining the good electrical properties with the flexibility and fluid resistance of fluorocarbon yields a very versatile yet light weight material for a variety of ESD and EMI applications.  相似文献   

16.
The present study aims to produce a light weight electromagnetic interference (EMI) shielding material from carbon nanofibers (CNFs)-based polysulfone (PSU) nanocomposites. EMI shielding effectiveness (EMI SE) was studied by analyzing the electromagnetic wave transmission, reflection, and absorption characteristics of nanocomposites. The electrical conductivity and EMI SE of the nanocomposite with different weight percentage of CNFs (3–10 wt%) were investigated at room temperature and the measurement of EMI SE was carried out in a frequency range of 8.2–12.4 GHz (X-band). The mechanism of EMI shielding of PSU/CNFs nanocomposite has been well explained by comparing the contribution of reflection and absorption to the total EMI SE. The state of dispersion of CNFs and PSU–CNFs interaction was studied by high resolution transmission electron microscopy and scanning electron microscopy. The thermal stability of nanocomposite studied from thermogravimetric analysis was increased after addition of CNFs to PSU matrix. Electrical conductivity of nanocomposite followed power law model of percolation theory having a percolation threshold Φc = 0.0079 vol% (0.9 wt%) and exponent t = 1.73. The EMI SE of nanocomposites with thickness of 1 mm was 19–45 decibel (dB) at 3–10 wt% CNFs loading. This high thermal stability and high EMI SE suggest the potential use of PSU/CNFs nanocomposite as effective lightweight EMI shielding material in different electronic applications.  相似文献   

17.
The multi-wall nanotubes (MWCNTs) were divisionalized equably by the fabric of glass in composites. Then the electrical properties such as permittivity, conductance and electromagnetic interference (EMI) shielding effectiveness (SE) of MWCNTs in GF/EP composite were studied. The effect of the content and dispersion of MWCNTs were researched in this work. Firstly the permittivity of MWCNTs/GF/EP composites were studied respectively by keeping layers of glass fabric and increasing content of MWCNTs or keeping content of MWCNTs and changing layers of glass fabric in electromagnetic wave band (5.85-18 GHz). Then the conductance of MWCNTs/GF/EP composites with different MWCNTs contents was tested. Furthermore, the EMI SE of composites with different MWCNTs contents in electromagnetic wave band (5.85-18 GHz) were studied. In addition, the morphologies of MWCNTs/GF/EP composites with the different MWCNTs weight percent were observed. The results show that the real part of permittivity of composites can be improved highest up to 75 and the imaginary part increase maximum up to 80. However there is no disciplinarian about effect of layers of glass fabric on dielectric property. The MWCNTs/GF/EP composite can be changed from the insulator to the semiconductor along with increasing the weight percent of MWCNTs. In electromagnetic wave band 5.85-18 GHz, the values of SE are increasing with increasing content of the MWCNTs.  相似文献   

18.
镀镍碳纳米管的微波吸收性能研究   总被引:54,自引:7,他引:54  
用竖式炉流动法制备了碳纳米管,碳纳米管的外径40nm~70nm,内径7nm~10nm,长度50μm~1000μm,呈直线型,用化学镀法在碳纳米管表面镀上了一层均匀的金属镍。碳纳米管吸波涂层在厚度为0.97mm时,在8GHz~18GHz,最大吸收峰在11.4GHz(R=-22.89dB),R<-10dB的频宽为3.0Hz,R<-5dB的频宽为4.7GHz。镀镍碳纳米管吸波涂层在相同厚度下,最大吸收峰在14GHz(R=-11.85dB),R<-10dB的频宽为2.23Hz,R<-5dB的频宽为4.6GHz。碳纳米管表面镀镍后虽然吸收峰值变小,但吸收峰有宽化的趋势,这种趋势对提高材料的吸波性能是有利的。碳纳米管作为偶极子在电磁场的作用下,会产生耗散电流,在周围基体作用下,耗散电流被衰减,从而雷达波能量被转换为其它形式的能量。  相似文献   

19.
Multilayered carbon nanotubes/silicon dioxide (CNTs/SiO2) electromagnetic wave absorbing ceramic matrix composite material was fabricated by hot-pressed sintering. The gradient layer structure was designed to improve its absorbing properties. The multilayered CNTs/SiO2 composite was shaped by adding five kinds of mixed powders with different CNTs contents (0 wt%, 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt%) to the graphite die in turn, and its average CNTs content was 5 wt%. Meanwhile, a single layered composite with the same content of CNTs (5 wt%) was fabricated as a contrast sample. The electromagnetic interference (EMI) shielding effectiveness (SE) and reflecting effectiveness (RE) were studied with insertion loss (IL) and return loss (RL) measurements in the range of 8–12 GHz. The results showed that the gradient multilayered sample had a better absorbing effectiveness and its absorbance was 1.5 times as high as the single layered sample’s, while their SEs were almost the same.  相似文献   

20.
杨博  郭磊  赵芳霞  张振忠 《材料导报》2011,25(20):74-76,79
针对低频频段(<1.5GHz)的电磁屏蔽涂层,采用快速混合法制备出导电聚苯胺纳米线,使用透射电镜(TEM)对其形貌和尺度进行表征,研究了搅拌方式对聚苯胺/聚氨酯涂层的导电性能和电磁屏蔽性能的影响。研究表明,由于磁场的作用,采用电磁搅拌法可以缩短聚苯胺聚合反应时间,合成均一的导电聚苯胺纳米线,其渗滤阈值为33.3%,含量为33.3%的聚苯胺纳米线的聚苯胺/聚氨酯涂层的电磁屏蔽性能为32.2dB,优于含量为45%的机械搅拌法制备的聚苯胺粉体,这可能是由于线性结构的导电聚苯胺在基体中能够较容易形成三维导电网络结构所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号