首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in-use performance and processing of many consumer products in the food, home and personal care industries are dependent on their tribological properties. A major component of these products is often a high molecular weight polymer, which is typically used to thicken aqueous systems. Polymer solutions tend to be non-Newtonian, and in particular their viscosity varies with shear rate, such that it is difficult to predict their friction or hydrodynamic film-forming behaviour. The present work relates the tribology of aqueous polymer solutions to their rheological properties in thin films in ‘soft’ contacts at high shear rates. The friction properties of three types of polymers in aqueous solution, polyethylene oxide, PEO; xanthan gum, XG; and guar gum, GG, have been studied as a function of polymer concentration over a wide range of entrainment speeds in a point contact formed between silicone rubber and steel. This has enabled the boundary lubrication and isoviscous-elastic lubrication properties of the solutions to be investigated using both hydrophilic and hydrophobic silicone surfaces.It is found that the friction vs. entrainment speed dependence follows the shape of a classical Stribeck curve. In general, a lower friction is observed with increasing polymer concentration in the mixed-regime. Using scaling factors for the entrainment speed, we have shown that this decrease in friction is likely to be due to viscous effects and that the scaling factors represent effective high shear rate viscosities. In the case of PEO and XG, and GG at low concentrations, a good correlation is found between this effective viscosity and the apparent viscosity measured at the highest shear rates attainable with the available rheometer. However, for GG at concentrations above 0.2%, the effective viscosity decreases with increasing polymer content.The three polymers do not significantly reduce friction in the boundary regime and in general give essentially the same response as water when an effective viscosity is taken into account. However, a slight increase in friction in comparison to pure water has been observed for XG and GG on hydrophobic surfaces. It is suspected that this may be due to a blocking of fluid entrainment, or possibly exclusion of polymer from the contact, due to the large hydrodynamic volume and rigid nature of the two biopolymers. Finally, for PEO solutions with full-film elastohydrodynamic conditions were reached, the measured friction coefficient of the film correlated quite well with the value calculated from the effective viscosity.  相似文献   

2.
A numerical contact model is used to study the influence of surface roughness and the pressure distribution on the frictional behaviour in rolling/sliding contacts. Double-crowned roller surfaces are measured and used as input for the contact analysis. The contact pressure distribution is calculated for dry static contacts and the results are compared with friction measurements in a lubricated rolling/sliding contact made with a rough friction test rig. The mean pressure is suggested as a parameter that can be used to predict the influence of surface roughness on the friction coefficient in such contacts. The results show two important properties of the friction coefficient for the friction regime studied in this paper: (1) there is a linear decrease in friction coefficient as a function of the slide-to-roll ratio, and (2) the friction coefficient increases linearly with increasing mean contact pressure up to a maximum limit above which the friction coefficient is constant. The absolute deviation of experimental results from the derived theory is for most cases within 0.005.  相似文献   

3.
The effect of polymeric fluid additives on EHL behavior of rolling/sliding line contacts is investigated numerically at low as well as high loads. The polymer-modified oil is represented by a homogeneous mixture of Newtonian base oil and power law fluid with varying concentration, viscosity ratio and power law index. The Reynolds equation incorporating the mixed rheological fluid model is derived using perturbation method. The EHL characteristics computed for polymer-modified oils are found to depend upon the effective viscosity of the lubricant mixture which is governed by the superposition of shear thinning behavior and piezo-thickening effect of the polymeric fluid additive. Since the reference viscosity of polymeric fluid additives is much higher than that of base oil, therefore, polymer-modified oils are shown to yield thicker fluid films in most of the cases. The results show a significant variation in maximum fluid pressure and minimum fluid film thickness with the volume fraction, reference viscosity ratio and power law index of the polymeric fluid additive.  相似文献   

4.
S OrtmannA Savan  Y GerbigH Haefke 《Wear》2003,254(11):1099-1105
The growing trend to improve component lifetimes coupled with the need to conserve resources is driving new technologies in fields such as tool and forming industries. The use of in-process structuring applied to hard coatings on surfaces is one way of creating lubricating surfaces on the microscale, with superior tribological properties and improved lifetimes.In this study, CrN coatings deposited by plasma-activated physical vapor deposition (PAPVD) on hard metal substrates were structured by variation of the deposition parameters. The parameter combinations favorable for surface structuring were identified.Of the various deposition parameters that were varied in this study, the bias voltage was determined to have a dominating influence on the surface structure of the coatings. A wide variety of structures were fabricated, ranging from flat to highly creviced, with grain sizes ranging from 5 to 500 nm, as determined using scanning electron microscopy (SEM). Profilometer measurements show that the surface roughness, Ra, could be varied from 0.04 to 0.12 μm. The highly creviced surfaces however exhibit a somewhat reduced hardness as well as lower adhesion to the substrates, relative to flat CrN surfaces. Even so, ball-on-disk (BoD) experiments, performed under conditions of minimum lubrication at high loads exhibited a longer wear life on the highly structured coatings compared to the relatively flat, unstructured surfaces. This is attributed to lubricant accumulation in microfissures present in the structured coatings. These microreservoirs not only provide critical lubrication at the contacting surfaces but also act as traps for wear-generated debris. Furthermore, the advantages of surface structuring are even more evident under low load conditions; this effect is the result of the reduced contact area and directed lubrication provided by the surface structuring.  相似文献   

5.
Influence of surface texture on boundary lubricated sliding contacts   总被引:8,自引:0,他引:8  
The friction and wear behaviour of boundary lubricated sliding surfaces is influenced by the surface texture. By introducing controlled depressions and undulations in an otherwise flat surface, the tribological properties can be improved. Lubricant can then be supplied even inside the contact by the small reservoirs, resulting in a reduced friction and a prolonged lifetime of the tribological contact.In the present paper, well-defined surface textures were produced by lithography and anisotropic etching of silicon wafers. The wafers were subsequently PVD coated with thin wear resistant TiN or DLC coatings, retaining the substrate texture. The size and shape of the depressions were varied and evaluated in reciprocating sliding under dry and boundary lubricated conditions.  相似文献   

6.
The friction responses of five fully formulated gear oils including mineral and synthetic oils were studied. This article examines the impact of contact motion types (rolling–sliding and pure sliding) and contact pressure on boundary and mixed friction properties of the selected gear oils in MTM (minitraction machine) and SRV (Schwing-Reib-Verschleiss tribometer). Mineral oils are found to be less affected by contact pressure compared to synthetic oils. Gear oils that show adsorption appear to be less sensitive to contact motion type in mixed lubrication while behave much more sensitive in boundary lubrication regimes. The ranking of gear oils for mixed friction was similar regardless of contact motion types at low contact pressures while differ at high contact pressures.  相似文献   

7.
The rolling contact fatigue (RCF) life of highly loaded machine components is significantly influenced by the surface roughness features so that there is a continuous effort to design the topography of rubbing surfaces to enhance lubrication efficiency and prolong the operation of machine components. It can be suggested from the recent experimental results that lubricant emitted from shallow micro-dents could effectively lift off the real roughness features and reduce the asperities interactions within rolling/sliding mixed lubricated contacts. Thereby the additional supply of lubricant from surface features could help to reduce the risk of surface damage through the reduction of the interaction of rubbing surfaces during start-up or starvation. However, the introduction of such roughness features into the rubbing surfaces of highly loaded non-conformal contacts should consider not only the effects on lubrication film thickness but also on RCF.That is why this study is focused on the effects of surface texturing on RCF within non-conformal rolling/sliding contacts operated under mixed lubrication conditions. The principal task has been whether possible beneficial effect on film thickness is not accompanied by the reduction in RCF life. Textures with various sizes of micro-dents and their arrangement within the contacts have been considered. It has been found that results obtained with textured surfaces have exhibited no obvious reduction in RCF. Conversely, some increase in RCF using textured surfaces was observed that could be attributed to the positive contribution of micro-dents working as lubricant micro-reservoirs that reduce asperities interactions. Nevertheless, further experiments are necessary to confirm this possible beneficial contribution of surface texturing on RCF.  相似文献   

8.
The fretting corrosion behaviour of lubricated tin plated copper alloy contacts at ambient and elevated temperatures is addressed in this paper. At 27 °C, lubrication is very effective and the contact resistance remains stable for several thousand fretting cycles whereas at elevated temperatures (155 °C) the performance of lubricated contact is not appreciable. Surface profile and surface roughness confirm that the lubricated contacts have a smoother profile and experience a lesser damage at the contact zone at ambient as well as at elevated temperatures. The mechanism of fretting corrosion of tin plated contacts appears to be similar with and without lubrication at all the temperatures studied. The difference in performance of the lubricated contacts at ambient and elevated temperatures is due to the faster wear rate of tin coating at elevated temperatures. Oxidation of the contact zone of the lubricated contacts is prevented at all temperatures studied. The study concludes that lubrication is effective in improving the life of the tin plated copper alloy contacts under fretting conditions at ambient temperatures whereas at elevated temperatures lubrication provides only a marginal improvement in performance. The decrease in performance of lubricated tin plated contacts at elevated temperatures is due to the higher wear rate of tin coating and not due to evaporation of the lubricant.  相似文献   

9.
This study has investigated the relationship between applied interfacial electrical potentials and friction and abrasion for steel/steel contacts in alkaline aqueous-based solutions. The potential at a steel-aqueous lubricated surface is important since it determines a number of important surface properties which influence the overall friction and resistance to abrasion. The experimental approach used a pin-on-disc rig incorporating potentiostatic control of the disc between −1.0 and +1.0 V overpotential.Tests employed a load of 50 N at a sliding speed of 0.03 m s−1. EN 24 grade steel, equivalent to AISI 4340, was used as the material for the pin and disc. Tests were conducted in electrolyte that contained electroactive species, namely octanoate ions, which could be “switched on” to the surface. Coefficient of friction measurements were carried out throughout testing and later linked to potential or current density behaviour to assess the mechanical and electrochemical interactions and its effect on wear and friction. The effects of lubricity of the adsorbed layers are discussed and used to explain the performance.  相似文献   

10.
The modified 3 in (76.2 mm) David Brown disc machine has been used to investigate the effect on scuffing performance of grinding away various amounts from the surface of nitrided steel discs. The results revealed a systematic deterioration in scuffing resistance as the surface nitrogen concentration decreased, but quantitative correlation between these parameters was hindered by the inadequacies of electron probe X-ray microanalysis as a tool for measuring low nitrogen concentrations. It was concluded that there is no safe depth to which Tenifer-treated (salt-bath nitrided) C15 steel can be ground without impairing its scuffing performance. Other disc tests were carried out to assess the effect on scuffing of phosphate treatment and oil formulation. Results showed that, while phosphate treatment is valuable when running against untreated steel, it is of no benefit against Tenifer-treated steel. On the other hand, the formulation of the lubricant was found to improve the scuffing resistance of Tenifer-treated steel  相似文献   

11.
A fast multigrid approach is presented for the analysis of thermal elastohydrodynamic lubrication (EHL) under rolling/sliding circular contacts at high loads and high slip ratios with low computing time on a personal computer. This fast solver combines directiteration, multigrid, Newton-Raphson, Gauss-Seidel iteration, and multilevel multi-integration methods into one working environment that can reduce the computational complexity from O(n3 to O(nlnn) for the thermal EHL problem under rolling/sliding circular contacts. Since the couped Reynolds and energy equations are simultaneously solved by the Newton-Raphson scheme, the iteration for the convergence solution is less than those of the classical approach. Results show that thermal effects on the pressure profile and film thickness are significant for a wide range of loads, speeds and slip ratios. The maximum midfilm and surface temperature rise in the Hertzian contact region increases with increasing slip ratio, dimensionless speed, and load. The minimum film thickness decreases with increasing load and slip ratio, and decreasing dimensionless speed.  相似文献   

12.
The effect of shot peening on rolling contact fatigue (RCF) and lubricant film thickness within non-conformal rolling/sliding contacts operated under mixed lubrication conditions was observed in this study. Rolling contact fatigue tests and film thickness measurements were carried out using specimens with modified surface topography by shot peening process using glass beads having diameter between 0.07 and 0.11 mm. It has been shown that the effect of shot peening on RCF has no positive effect even if shot peened surface of the roller exhibited somewhat higher hardness in contrast to the grounded surface. The reduction of RCF may be caused due to asperities interactions because after shot peening the surface roughness of the roller was increased. Film thickness measurements confirmed that the contact is realized actually only between asperity peaks of shot peened ball and smooth disc.Conversely, no negative effect on RCF was observed when the shot peened surface of the roller was polished. The polish of asperity peaks causes the creation of lands and micro-cavities, which may be employed as lubricant micro-reservoirs. From film thickness measurements it has been observed that lubricant emitted by shallow micro-cavities can provide the local increase in lubrication film thickness, which thereby reduces asperities interactions. Similar results were obtained for start-up conditions where the squeeze lubricant enlarges film thickness and reduces surface interactions.From the obtained results, it can be suggested that properly designed surface topography modification could help to increase the efficiency of lubrication films leading to the enhancement of contact fatigue life of non-conformal mixed lubricated rolling/sliding contacts.  相似文献   

13.
A. Z. Szeri   《Wear》1996,200(1-2):353-364
There are numerous instances of technical importance in which multi-component lubricants are utilized either by design or by necessity. In many of these cases one of the components is a liquid while the other component is a gas, or both components are liquids. These mixtures do not exhibit Newtonian behavior even when their components themselves are Newtonian, and thus classical lubrication theory is inapplicable to bearings lubricated with mixtures. Our objective here is to extend hydrodynamic lubrication theory to lubrication with liquid-liquid and liquid-gas mixtures. The extended theory is then applied to journal bearings, roller bearings and to lubrication in cold rolling. We are able to predict several experimentally observed phenomena such as oil-pooling ahead of an elastohydrodynamic lubrication conjunction.  相似文献   

14.
Many industrial processes involve the passage of material through the nip between rollers: printing, paper manufacture, rubber processing and metal rolling. During an investigation of wear of involute gear teeth it was observed that the wear debris tended to accumulate on the tips of the mating teeth. This behaviour was reproduced by passing small pieces of plasticine between rollers pressed into contact, which had a difference in peripheral speeds. The plasticine was observed to transfer from the slower to the faster surface. Similar behaviour was found with a granular paste and in the processing of uncured rubber. The paper reports an investigation in depth into this phenomenon. Transfer was found to depend on the ratio of surface speeds and the amount of compression through the nip. For small reductions in thickness of the billet it always emerged adhering to the slower surface, but for large reductions the opposite was true. Simple kinematic models of the deformation in the nip have been proposed which reflect the observations qualitatively and point the way to more complete finite-element analysis.  相似文献   

15.
《Wear》2007,262(7-8):986-995
Seizure initiation in lean-lubricated contacts was experimentally studied using a transient test method of ball-on-disc type at two different sliding velocities, 2 and 3.8 m/s. Four different nodular cast iron surfaces were tested against a bearing ball of 100Cr6 steel: a fine-milled and roller-burnished surface, a ground and lapped surface, a ground and lapped laser-melted surface, and finally a ground surface. The results show that the ground surface, even though it is smoother than the fine-milled and roller-burnished surface, shows indications of seizure at a lower load. No graphite nodules from the nodular cast iron were visible in the surfaces on inspection with an optical light microscope. In contrast, the ground and lapped surface suffered no initial or total seizure in these tests. In this case, many graphite nodules were visible in the surface, and these nodules became detached in the contact zone, where they probably acted as a solid lubricant. Many graphite nodules were also visible in the ground and laser-melted surface, though in this case the graphite nodules did not become detached. This surface topography initiated seizure under a low normal load, and increased sliding velocity lowered the total seizure load significantly.  相似文献   

16.
Industrial lubricants are invariably used with additives (with high sulfur and phosphorous contents) for tribological performance enhancement. However, these additives are environmentally very harmful. Hence, there is an urgent need to find alternate solutions for enhancing the tribological performance of lubricants and components without the use of harmful additives. The objective of this work is to investigate the feasibility of using polymer composite coatings in enhancing the tribological properties of steel surfaces in dry and base oil lubricated conditions. Pure epoxy and its composite (with 10?wt-% of graphene or graphite powder) films were coated onto steel substrates and tested under dry and base oil lubricated conditions. Friction and wear experiments were conducted on a ball on cylinder tribometer between polymer/composite coated cylindrical steel surface (shaft) and an uncoated steel ball as the counterface. Tests were conducted at various normal loads and speeds. In dry condition at 3 N load and 0.63?m s??1 sliding speed, the wear life of epoxy was increased by five times and coefficient of friction was nearly the same (0.18) on inclusion of graphene nanoparticle. In lubricated case, epoxy/graphene composite coating performed eight times and more than five times better than pure epoxy and epoxy/graphite respectively.  相似文献   

17.
Friction and vibration behaviors of lubricated concentrated point contacts with surface texturing have been experimentally investigated under reciprocating motions. Ground, lapped and textured lapped flat surfaces are tested against polished ball surfaces. Coefficient of friction, surface temperature, electrical resistance and vibrations at the lubricated contacts have been measured and analyzed. In the presence of surface texture, the coefficient of friction reduces by 30% in some of the cases. Surface temperature distributions on reciprocating tracks have also been measured and compared. Vibrations associated with lubricated point contacts formed between textured surfaces/balls reduce significantly at resonance frequency in comparison to polished surfaces/balls.  相似文献   

18.
It is of utmost importance to know the friction loss of helical gears because they are produced quite widely used. However, basic research, e. g., load carrying characteristics of helical gears and friction loss, is extremely scarce.

In this paper the authors focused on the influence of the kind of lubricating oil on the friction loss of helical gears. Further they dealt with the influence of height of teeth on friction loss of helical gears. The authors carried out experiments to study the influence of lubricating oil viscosity, additive, and base oil type as well as rotational speed on friction loss of helical gears. Not only mineral oils but also synthetic oils were used as base oils, e. g., paraffin, poly-α-olefin, and polyglycol type oils. As additives the authors used EP additive and ZnDTP. Further they investigated the influence of tooth height on friction loss.

The experimental results gained make it possible to drastically reduce friction loss of helical gears.  相似文献   

19.
The minimizing of friction loss of helical gears is one of today's most important problems. Though helical gears are very widely used in power transmissions of automobiles and ships, basic research on helical gears is comparatively scarce. Under these circumstances, the authors studied the friction loss of helical gears in view of various helix angles, loads, and rotational speeds. Further the relationship between temperature rise of teeth and friction loss was made clear. The results were discussed from the viewpoint of reduction of friction loss and were related to the results of the authors' spur gear tests. Friction loss and temperature rise of helical gear teeth were also investigated while the helix angles were widely varied. All these results, based on experimental investigations, were summarized and general formulas were established in view of gear design.  相似文献   

20.
Zhrgang Wang  Kuniaki Dohda 《Wear》2006,260(3):249-257
A series of experiments was carried out using a rolling-type tribometer to investigate the effects on friction behavior of the entraining velocity of the lubricant at the inlet to the contact zone (V) and sliding velocity during deformation (ΔV). Experiments with stainless steel sheets of two different surface roughnesses showed that the variations in the friction coefficient with entraining velocity V and sliding velocity ΔV are largely dependent on the initial surface texture of the workpiece. For a smooth workpiece, the friction coefficient decreases with increasing sliding velocity ΔV but keeps almost constant with increasing entraining velocity V. However, for a rough workpiece, the friction coefficient initially decreases slowly and increases largely with increasing sliding velocity ΔV or decreasing entraining velocity V. Observation of the rolled surface for a smooth workpiece shows that, with increasing entraining velocity V, the slip band becomes more marked, and with increasing sliding velocity ΔV, the rubbed portions become more conspicuous. For a rough workpiece, galling occurs at high sliding velocity ΔV. The critical condition for galling outbreak is shown on the VV graph. The galling outbreak process is observed by interrupting the rolling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号