首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two parameter driving force for fatigue crack growth analysis   总被引:3,自引:0,他引:3  
A model for fatigue crack growth (FCG) analysis based on the elastic–plastic crack tip stress–strain history was proposed. The fatigue crack growth was predicted by simulating the stress–strain response in the material volume adjacent to the crack tip and estimating the accumulated fatigue damage. The fatigue crack growth was regarded as a process of successive crack re-initiation in the crack tip region. The model was developed to predict the effect of the mean stress including the influence of the applied compressive stress. A fatigue crack growth expression was derived using both the plane strain and plane stress state assumption. It was found that the FCG was controlled by a two parameter driving force in the form of: . The driving force was derived on the basis of the local stresses and strains at the crack tip using the Smith–Watson–Topper (SWT) fatigue damage parameter: D=σmaxΔε/2.The effect of the internal (residual) stress induced by the reversed cyclic plasticity was accounted for the subsequent analysis. Experimental fatigue crack growth data sets for two aluminum alloys (7075-T6 and 2024-T351) and one steel alloy (4340) were used for the verification of the model.  相似文献   

2.
Retardation in the fatigue crack growth rate following the application of a single peak overload in a fatigue loading sequence has been studied for a low carbon structural steel. Tests have been performed at load ratios of R= 0.2 and R= 0.6 at a baseline stress intensity range, ΔKb, corresponding to fatigue crack growth rates in the Paris regime. Single peak overloads were applied at a crack-length to specimen-width ratio of a/W= 0.5. At the load ratio of R= 0.6 monotonic or “static” fracture modes were observed upon application of the overload, and these produced an immediate increase in growth rate. A subsequent retardation is attributed to the presence of a residual compressive stress field ahead of the crack tip. A similar retardation was observed at a load ratio of 0.2. The importance of residual stress was established by performing stress relieving experiments. In addition, removal of the surface deformation after an overload by machining “T” sidegrooves resulted in an extended transient, which could not be explained by residual machining stresses.  相似文献   

3.
It is generally accepted that the fatigue crack growth (FCG) depends mainly on the stress intensity factor range (ΔK) and the maximum stress intensity factor (Kmax). The two parameters are usually combined into one expression called often as the driving force and many various driving forces have been proposed up to date. The driving force can be successful as long as the stress intensity factors are appropriately correlated with the actual elasto-plastic crack tip stress-strain field. However, the correlation between the stress intensity factors and the crack tip stress-strain field is often influenced by residual stresses induced in due course.A two-parameter (ΔKtot, Kmax,tot) driving force based on the elasto-plastic crack tip stress-strain history has been proposed. The applied stress intensity factors (ΔKappl, Kmax,appl) were modified to the total stress intensity factors (ΔKtot, Kmax,tot) in order to account for the effect of the local crack tip stresses and strains on fatigue crack growth. The FCG was predicted by simulating the stress-strain response in the material volume adjacent to the crack tip and estimating the accumulated fatigue damage. The fatigue crack growth was regarded as a process of successive crack re-initiations in the crack tip region. The model was developed to predict the effect of the mean and residual stresses induced by the cyclic loading. The effect of variable amplitude loadings on FCG can be also quantified on the basis of the proposed model. A two-parameter driving force in the form of: was derived based on the local stresses and strains at the crack tip and the Smith-Watson-Topper (SWT) fatigue damage parameter: D = σmaxΔε/2. The effect of the internal (residual) stress induced by the reversed cyclic plasticity manifested itself in the change of the resultant (total) stress intensity factors controlling the fatigue crack growth.The model was verified using experimental fatigue crack growth data for aluminum alloy 7075-T6 obtained under constant amplitude loading and a single overload.  相似文献   

4.
CRACK CLOSURE AND PLASTIC ZONE SIZES IN FATIGUE   总被引:2,自引:0,他引:2  
Abstract— An elastic-plastic finite element simulation of growing fatigue cracks which accounts for plasticity-induced crack closure is used to study the size of the forward and reversed plastic zones at the crack tip. Forward plastic zone widths for fatigue cracks and stationary, monotonically loaded cracks are compared and found to be similar. The width of the forward plastic zone at the tip of a fatigue crack is not significantly influenced by closure. The traditional Irwin-Rice estimate for crack tip plastic zone size in plane stress is found to be generally consistent with the finite element results. The width of the reversed plastic zone at the tip of a growing fatigue crack in plane stress is found to be considerably less than one-fourth the size of the forward plastic zone, the traditional Rice estimate. This decrease appears to be due to fatigue crack closure. A simple model is developed which permits estimation of the reversed plastic zone size for any stress ratio from information about maximum and minimum stresses and the closure stress. The predictions of this model agree closely with plastic zone sizes calculated by the finite element analysis. These observations appear to be consistent with experimental measurements of forward and reversed plastic zones sizes reported in the literature.  相似文献   

5.
Experiments have been performed on a series of 2024-T351 Aluminum alloy uniaxial, tension specimens loaded under R = 0 conditions to grow a low cycle fatigue crack to a predetermined length. One half of the specimens were given a 33% single pulse overload at the conclusion of the test.All specimens were sectioned along the plane of the crack and measurements made of the residual displacements occurring at this location due to the relief of the internal stresses produced during crack propagation and overload. The data was used as the boundary condition in a Displacement Boundary Value Problem solving an Airy Stress Function for the residual stress distribution in the vicinity of the crack.The results indicate a significant degree of tensile stress ahead of the crack tip and compressive stresses both at the crack tip and in the wake of the crack reaching magnitudes as high as 36% of the yield stress. The results are consistent in both the overload and no overload cases however the magnitude and extent of the compressive stress region appears to be increased by the action of the overload. These results are consistent with the concept of crack closure as proposed by Elber.  相似文献   

6.
In this work, three classes of mechanisms that can cause load sequence effects on fatigue crack growth are discussed: mechanisms acting before, at or after the crack tip. After reviewing the crack closure idea, which is based on what happens behind the crack tip, quantitative models are proposed to predict the effects at the crack tip due to crack bifurcation. To predict the behavior ahead of the crack tip, a damage accumulation model is proposed. In this model, fatigue cracking is assumed caused by the sequential failure of volume elements or tiny εN specimens in front of the crack tip, calculated by damage accumulation concepts. The crack is treated as a sharp notch with a small, but not zero radius, avoiding the physically unrealistic singularity at its tip. The crack stress concentration factor and a strain concentration rule are used to calculate the notch root strain and to shift the origin of a modified HRR field, resulting in a non-singular model of the strain distribution ahead of the crack tip. In this way, the damage caused by each load cycle, including the effects of residual stresses, can be calculated at each element ahead of the crack tip using the correct hysteresis loops caused by the loading. The proposed approach is experimentally validated and extended to predict fatigue crack growth under variable amplitude loading, assuming that the width of the volume element broken at each cycle is equal to the region ahead of the crack tip that suffers damage beyond its critical value. The reasonable predictions of the measured fatigue crack growth behavior in steel specimens under service loads corroborate this simple and clear way to correlate da/dN and εN properties.  相似文献   

7.
Elastic-plastic finite element simulations of growing fatigue cracks in both plane stress and plane strain are used as an aid to visualization and analysis of the crack closure phenomenon. Residual stress and strain fields near the crack tip are depicted by both color fringe plots and x-y graphs. Development of the residual plastic stretch in the wake of a growing plane stress fatigue crack is shown to be associated with the transfer of material from the thickness direction to the axial direction. Finite element analyses indicate that crack closure does occur under pure plane strain conditions. The development of the residual plastic stretch in plane strain is shown to be associated with the transfer of material from the in-plane transverse direction to the axial direction. This in-plane contraction also leads to the generation of complex residual stress fields. The total length of closed crack at minimum load in plane strain is shown to be a small fraction of the total crack length, especially for positive stress ratios. This suggests that experimental measurement of plane strain closure would be extremely difficult, and may explain why some investigators have concluded that closure does not occur in plane strain.  相似文献   

8.
The present paper contains research results determined within the framework of a project called IBESS (?Integrale Bruchmechanische Ermittlung der Schwingfestigkeit von Schweißverbindungen“) by the Materials Mechanics Group of the Technische Universität Darmstadt [1]. Aim is to calculate the fatigue life of welded joints by taking into account the effect of residual stresses and the influence of the weld toe geometry. Here, the fatigue life is regarded as period of short fatigue crack growth. Two and three dimensional finite element models, with cracks as initial defects, are constructed for this purpose. Fatigue crack growth analyses are performed by using the node release technique together with the finite element program ABAQUS. The welding residual stresses as well as the plasticity induced crack closure effects are considered. Structural calculations are performed in order to introduce residual stress fields in finite element models. The calculated compressive residual stress field matches the measured one especially in the weld notch area. The effective cyclic J‐integral (ΔJeff) is used as crack tip parameter in a relation similar to the Paris equation for the calculation of the fatigue life. For this purpose, a Python code was written for the determination of ΔJeff at every crack length phase. The calculated fatigue lives were compared with experimental data and a good accordance between both results was achieved. The impact of welding residual stresses on ΔJeff as well as on the fatigue life during short crack growth was investigated. As expected, results revealed that at lower stress amplitude, a compressive residual stress field is favorable to the fatigue life, whilst a tensile residual stress field is unfavorable. The influence of residual stresses can be neglected only for large load amplitudes.  相似文献   

9.
This paper details the theoretical development of a new model for fatigue crack growth retardation resulting from an applied overload. The model is based upon the concept that residual stresses due to plastic deformation reduce the value of the stress intensity range that drives fatigue crack propagation. A calculation is presented showing the variation of plastic zone size as the crack tip advances through the overload plastic zone. This information is used to define an effective stress intensity range that applies during the retardation period. A strip-yield representation of crack tip plasticity is employed in the analysis, and the effect of crack closure is included by means of a previously developed analytic function method. The fracture mechanics based model predicts the delayed retardation effect and other experimentally observed features of overload-influenced fatigue crack growth.  相似文献   

10.
The evolution of the stress–strain fields near a stationary crack tip under cyclic loading at selected R‐ratios has been studied in a detailed elastic–plastic finite element analysis. The material behaviour was described by a full constitutive model of cyclic plasticity with both kinematic and isotropic hardening variables. Whilst the stress/strain range remains mostly constant during the cyclic loading and scales with the external load range, progressive accumulation of tensile strain occurs, particularly at high R‐ratios. These results may be of significance for the characterization of crack growth, particularly near the fatigue threshold. Elastic–plastic finite element simulations of advancing fatigue cracks were carried out under plane‐stress, plane‐strain and generalized plane‐strain conditions in a compact tension specimen. Physical contact of the crack flanks was observed in plane stress but not in the plane‐strain and generalized plane‐strain conditions. The lack of crack closure in plane strain was found to be independent of the material studied. Significant crack closure was observed under plane‐stress conditions, where a displacement method was used to obtain the actual stress intensity variation during a loading cycle in the presence of crack closure. The results reveal no direct correlation between the attenuation in the stress intensity factor range estimated by the conventional compliance method and that determined by the displacement method. This finding seems to cast some doubts on the validity of the current practice in crack‐closure measurement, and indeed on the role of plasticity‐induced crack closure in the reduction of the applied stress intensity factor range.  相似文献   

11.
Abstract

Neutron strain scanning has been used to determine residual and applied stresses along the plane of a fatigue crack in a metal matrix composite. The specimens were studied in two conditions: one was as heat treated, and the other was plastically deformed in tension before fatigue cracking. Neutron diffraction was used to measure the three principal strains as a function of position along the crack growth direction, ahead of and in the wake of the crack, and these measurements were used to calculate the stress variation along the crack line. An Eshelby based model was used to separate the individual components of the stress. It was found that the thermal misfit stress between matrix and reinforcement was changed significantly by the plastic deformation and was effectively reduced to near zero in both phases. This changes the crack tip strains in the material, decreasing the strains in the matrix and increasing those in the reinforcement. Possible implications of this for fatigue crack propagation are discussed.  相似文献   

12.
The role of air in fatigue load interaction   总被引:1,自引:0,他引:1  
Natural fatigue crack formation and growth were studied in notched Al–Cu alloy coupons through high‐resolution SEM fractography. The experiments were conducted under programmed loading conditions designed to induce microscopic marking of the crack formation and growth process under varying stress ratio and closure‐free crack tip conditions. Control experiments were performed by switching between an air and vacuum environment. In air, varying the stress ratio from 0.74 down to 0.64 retards crack growth by up to a factor of five. This ‘closure‐free’ stress ratio history effect totally disappears in vacuum, suggesting a significant environmental influence on stress ratio and its history. Crack‐tip stress state appears to moderate environmental action, revealing a potential mechanism sensitive to residual stress. Consequently, crack closure, residual stress and crack front and plane orientation are identified as major load interaction mechanisms whose synergistic action controls fatigue under variable amplitude loading. The study also appears to suggest that as a consequence of the crack seeking the path of least resistance, load‐sequence sensitive crack plane and front orientation may only induce retardation effects.  相似文献   

13.
Variable-amplitude fatigue studies of 2024-T3 aluminum alloy were performed to examine the effect of sheet thickness on fatigue crack growth rate retardation. Results indicated that the amount of retardation increased with decreasing specimen thickness. This phenomenon was attributed to enhanced plastic strains under plane stress conditions (i.e. in a thin sheet) which formed ahead of the advancing crack tip as a result of a high load excursion. These strains are believed to produce both crack closure and a favorable compressive residual stress field around the crack tip. Evidence of increased crack surface interference under plane stress situations was verified with electron fractographic observations.  相似文献   

14.
Abstract— Near threshold, mixed mode (I and II), fatigue crack growth occurs mainly by two mechanisms, coplanar (or shear) mode and branch (or tensile) mode. For a constant ratio of ΔKIKII the shear mode growth shows a self-arrest character and it would only start again when ΔKI and ΔKII are increased. Both shear crack growth and the early stages of tensile crack growth, are of a crystallographic nature; the fatigue crack proceeds along slip planes or grain boundaries. The appearance of the fracture surfaces suggest that the mechanism of crack extension is by developing slip band microcracks which join up to form a macrocrack. This process is thought to be assisted by the nature of the plastic deformation within the reversed plastic zone where high back stresses are set up by dislocation pile-ups against grain boundaries. The interaction of the crack tip stress field with that of the dislocation pile-ups leads to the formation of slip band microcracks and subsequent crack extension. The change from shear mode to tensile mode growth probably occurs when the maximum tensile stress and the microcrack density in the maximum tensile plane direction attain critical values.  相似文献   

15.
Abstract The interaction of fatigue and creep in a titanium metal matrix composite was studied by employing loading frequencies of 10 Hz (in both air and vacuum environment) and 0.1 Hz with and without hold times (in air) at 500°C. It was shown that, for the same loading frequency, the crack growth rate is lower in vacuum than in air. In an air environment, however, where the influence of load-related creep and environmental effects exist, it was shown that a decrease in the loading frequency leads to a decrease in the crack growth rate. This behavior is interpreted in terms of the redistribution of fiber and matrix stresses occurring in response to the creep-related relaxation of matrix stresses. The result of this stress redistribution is the generation of a compressive axial residual stress in the matrix phase in the region of the composite ahead of the crack tip. As the crack bridges the fibers in this region, the release of the matrix residual compressive stress leads to the closure of the matrix fractured surfaces at the crack tip, thus leading to a decrease in the crack tip driving force. To support this concept, experimental measurements of the crack opening displacement at different loading frequencies are presented. In addition, a simple model is proposed to describe the nature of the residual stresses developed in the matrix phase during cyclic loading. Results of this model have been examined using finite element analysis. The influence of time-dependent effects during a fatigue cycle was, furthermore, investigated by carrying out high frequency fatigue tests on specimens which have been previously subjected to creep deformation. Results of these tests in terms of the crack growth rate and associated crack closure, support the conclusion that a predeformed matrix produces a decrease in the crack growth rate of the corresponding composite.  相似文献   

16.
Neutron diffraction has been used to measure the evolution of the residual stresses in a VPPA welded Al-2024 alloy middle tension (M(T)) specimen with fatigue loading and subsequent crack growth. The measurements were carried out on the diffractometer ENGIN-X, a time-of-flight instrument, at the ISIS Pulsed Neutron Source. Fatigue crack growth was performed in situ and strain measurements averaged through the thickness of the specimen were made along two orthogonal directions as the crack grew, allowing the stresses in the specimen to be calculated assuming plane stress. 2D finite element simulation of the evolution of the initial residual stress field with crack growth, using an elastic model produced predictions that were in reasonable agreement with the experimental results. The results further indicate that some re-distribution of the residual stress field occurred due to the crack tip plasticity associated with the fatigue loading.  相似文献   

17.
In this paper computational and experimental results are presented concerning residual stress effects on fatigue crack growth in a Compact Tension Shear (CTS) specimen under cyclic mode I loading. For a crack of constant length it is found that hardly any compressive residual stresses or crack closure effects are generated along the crack surfaces behind the crack tip through the considered cyclic mode I loading with a load ratio of R=0.1. Only if fatigue crack growth is modelled during the simulation of the cyclic loading process these well-known effects are found. On the other hand it is shown that they have hardly any influence on the residual stresses ahead of the crack tip and thus on further fatigue crack growth. For all cases considered the computational finite element results agree well with the experimental findings obtained through X-ray diffraction techniques.  相似文献   

18.
Thermoelastic stress analysis has been developed in recent years as a direct method of investigating the crack tip stresses in a structure under cyclic loading. This is a consequence of the fact that stress intensity factors obtained from thermoelastic experiments are determined from the cyclic stress field ahead of a fatigue crack, rather than inferred from measurement of the crack length and load range. In the present paper the results of fatigue crack growth tests performed on welded ferritic steel plates are reported. From the results it can be observed that the technique is sensitive to the effects of crack closure and the presence of tensile and compressive residual stresses due to welding.  相似文献   

19.
Room temperature creep (RTC) at a crack tip and its influence on the fatigue crack growth behavior of a 304 stainless steel have been studied at room temperature. A time-dependent deformation has been observed at the crack tips under various stress intensity factors. The deformation increases with increasing stress intensity factor. Either acceleration or retardation of fatigue crack growth rate is found after holding at K RTC, which depends on the load pattern. A demarcation line is observed on the fracture surface following the holding period. This implies that the crack propagation root or mode changed after the hold time.  相似文献   

20.
A transient behaviour is observed in the numerical analysis of plasticity induced crack closure at the beginning of crack propagation, as the residual plastic field is being formed. The extent of crack propagation prior to plasticity induced crack closure measurement has a major influence on the accuracy of numerical prediction and on computation time. The objective here is to quantify and understand the minimum propagation, Δastb, required to obtain stabilized crack opening values. For plane stress state, Δastb was found to increase with ΔK. Under plane strain conditions, a peak of closure exists at the beginning of crack propagation for relatively low ΔK values, which promotes relatively large transient periods. Two driving forces explain the stabilization behaviour, the formation of residual plastic wake and the stabilization of plastic strain, but the second seemed to control the phenomenon. Finally, two strategies are proposed to accelerate convergence. The first, consisting of a progressive increase of maximum load, is relevant in plane strain and 3D studies, in order to eliminate the initial peak. The second strategy consists of an extrapolation model and is very effective for plane stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号