共查询到20条相似文献,搜索用时 78 毫秒
1.
针对基于SLAM技术无人机在特定高度下构建二维经历图的优化问题,在RatSLAM的基础上,采用仿生声呐系统代替视觉传感器的BatSLAM模型和音频感知哈希闭环检测,实现在暗光条件下的二维经历图优化。BatSLAM模型通过绝对差值和(SAD)图像处理方法来进行仿生声纳模板的更新,此方法仅仅判断二幅耳蜗图外观是否一致,不存在几何处理和特征提取。由于耳蜗图在获取和传输过程中会产生各类噪音,相同位置获得的耳蜗图具有一定的差异,会导致构建的经历图失真。本文在BatSLAM的基础上,使用音频感知哈希算法对耳蜗图进行特征提取,并进行闭环检测。改进后的算法不仅考虑到外观,而且考虑到相邻频带间的能量差异,通过提高闭环检测准确率,来改善经历图的失真问题。仿真实验表明:采用基于音频感知哈希闭环检测的BatSLAM模型,不仅实现了无人机特定高度和暗光条件下二维经历图的构建,而且提高了闭环检测准确率,从而改善经历图的失真问题,实现经历图的优化。 相似文献
3.
同步定位与地图构建(SLAM)是移动机器人实现真正自主的关键,无迹卡尔曼滤波(UKF)由于直接利用系统非线性模型而在SLAM问题中得到广泛的应用。基于平方根滤波可以确保协方差矩阵的非负定的思想,将平方根UKF应用到SLAM问题中,确保了SLAM算法的稳定性,并得到了较高的估计精度。仿真结果表明,该算法是有效的。 相似文献
4.
针对同步定位与地图构建(SLAM)问题中传统概率算法存在计算量大、复杂度高、易陷于局部最优解等问题,本文提出一种未来深入研究的方法建议,将鼠类脑细胞中边界细胞(border cells)、局部场景细胞(view cells)、网格细胞(grid cells)、速度细胞(speed cells)、位姿细胞(pose cells)等具有定位导航功能的细胞应用于SLAM研究中,构建一种基于多细胞导航机制的BVGSP-SLAM模型。结合具有实时关键帧匹配的闭环检测算法以避免光线变化对SLAM的影响,融入速度细胞和边界细胞以避免移动障碍物对SLAM的影响,利用鼠类混合细胞衍生出的数学模型分析该系统的鲁棒性和实时性。将生物细胞模型引入SLAM,并形成了建模、仿真与实验验证一体化的研究体系,为移动机器人SLAM研究领域多样化提供重要的理论参考。 相似文献
5.
6.
7.
针对在常规Graph SLAM(simultaneous location and mapping)算法中后端优化无法高效排除错误闭环影响的问题,提出一种自适应的Graph SLAM鲁棒闭环算法.通过分析代价函数中尚未确定的参数对优化过程的影响,根据迭代得到的最新信息,对这些参数进行更新,从而加快算法收敛速度,并对不同的数据集有很好的适应性.利用公开的数据集对算法进行实验,通过对比发现,在添加不同类型、不同数量的异常闭环条件下,本文算法对不同数据集具有良好适应性且收敛速度较快,证明了算法的有效性. 相似文献
8.
针对移动机器人单目视觉同步定位与地图构建中的闭环检测问题,文中设计一种基于视觉词典的闭环检测算法。算法对采集的每帧图像通过SURF进行特征提取,应用模糊K均值算法对检测的视觉特征向量进行分类,在线构建表征图像的视觉词典。为精确表征局部视觉特征与视觉单词间的相似关联,利用混合高斯模型建立视觉词典中的每一视觉单词的概率模型,实现图像基于视觉词典的概率向量表示,通过向量的内积来计算图像间的相似度。为保证闭环检测的成功率,应用贝叶斯滤波融合历史闭环检测与相似度信息来计算闭环假设的后验概率分布。另外,引入浅层记忆与深度记忆两种内存管理机制来保证算法执行的快速性。实验结果证明该方法的有效性。 相似文献
10.
自主移动机器人通过自身携带的传感器来感知周围环境是实现其智能导航的前提。由于视觉传感器只能检测路标的方位角,不能提供距离信息,当利用视觉传感器完成机器人的同步定位及地图创建(SLAM)时,由于路标距离信息的缺失,会带来新路标的初始化及旧路标关联等难题。为识别新路标方位,采用滞后的三角型测量法来估计新路标的距离,从而解决了新路标初始化及旧路标关联等问题,并最终建立了一套适用于视觉传感器的SLAM算法及在Matlab上建立的仿真模型。仿真实验结果表明,算法满足概率估计的一致性和收敛性条件,是一种有效的仅检测路标方位角的同步定位及地图创建算法,证明方法的有效性。 相似文献
11.
机器人在执行同时定位与地图创建(simultaneous localization and mapping,SLAM)的复杂任务时,容易受到移动物体的干扰,导致定位精度下降、地图可读性较差、系统鲁棒性不足,为此提出一种基于深度学习和边缘检测的SLAM算法。首先,利用YOLOv4目标检测算法获取场景中的语义信息,得到初步的语义动静态区域,同时提取ORB特征点并计算光流场,筛选动态特征点,通过语义关联进一步得到动态物体,利用canny算子计算动态物体的轮廓边缘,利用动态物体以外的静态特征点进行相机位姿估计,筛选关键帧,进行点云叠加,利用剔除动态物体的点云信息构建静态环境地图。本文算法在公开数据集上与ORB_SLAM2进行对比,定位精度提升90%以上,地图可读性明显增强,实验结果表明本文算法可以有效降低移动物体对定位与建图的影响,显著提升算法稳健性。 相似文献
12.
An online incremental method of vision-only loop-closure detection for long-term robot navigation is proposed. The method is based on the scheme of direct feature matching which has recently become more efficient than the Bag-of-Words scheme in many challenging environments. The contributions of the paper are the application of hierarchical k-means to speed-up feature matching time and the improvement of the score calculation technique used to determine the loop-closing location. As a result, the presented method runs quickly in long term while retaining high accuracy. The searching cost has been markedly reduced. The proposed method requires no any off-line dictionary generation processes. It can start anywhere at any times. The evaluation has been done on standard well-known datasets being challenging in perceptual aliasing and dynamic changes. The results show that the proposed method offers high precision-recall in large-scale different environments with real-time computation comparing to other vision-only loop-closure detection methods. 相似文献
13.
一种基于单目视觉的人手检测与识别方法 总被引:1,自引:0,他引:1
提出了一种单目视觉下的人手检测与识别方法。该方法结合肤色检测与运动前景检测技术,实现了人手的定位,再由阈值分割获取人手的二值图像。提取傅里叶形状描述子作为二值图像的特征,在与样本的特征进行相似性比对之后获得最终识别结果。实验证明,该方法可以有效地实现复杂背景下人手的定位与识别。 相似文献
14.
传统的RatSLAM算法中视觉处理受环境、光照的影响大,进而导致建图精度及稳定性下降。因此,提出了一种快速增量式视觉处理方法克服原RatSLAM系统中的视觉处理的缺陷。以一个改进型的二叉搜索树为检索算法,通过动态岛屿机制对图像进行分组,最终通过序列匹配的形式实现环境识别,达到了在线、准确、快速识别环境的目的。实验结果表明,所提算法的位置识别准确率高于99%,召回率高于80%,平均处理时间低于50ms。本系统的闭环性能、时间性能及建图稳定性均显著优于现有方案,进一步证明了基于快速增量式视觉处理方法的鲁棒性、高效性。 相似文献
15.
16.
为了解决基于Rao-Blackwellized粒子滤波器的同时定位与地图创建算法需要大量的采样粒子,而且频繁重采样可能导致粒子耗尽的问题,提出了融合遗传优化的粒子滤波器算法。设计了一种变异的遗传算法来兼顾粒子的权值和粒子集的多样性,取代原有的重采样步骤。在计算采样的提议分布时考虑了里程计信息和距离传感器信息,并且通过遗传算法来维持粒子集的多样性。实验结果表明,融合遗传优化的粒子滤波器算法在估计精度和一致性方面都具有较好的性能,所创建的地图具有更高的精度。 相似文献
17.
研究和实现了一种基于SLAM技术的虚实配准方法,通过将SLAM分离为定位和构图,分别利用改进的pf做位姿估计和ukf进行位置估计,进而实现整个场景内目标的位姿计算,最终完成虚实配准。一定程度上解决了传统方法中存在的视域受限问题,并同时支持户内和户外应用,提高了增强现实系统的可用性。 相似文献
18.
在SLAM领域中,为了克服稀疏特征地图不能提供详尽环境信息的缺点,从观测信息的物理意义出发,提出了全局观测地图模型.
其基本思想是在稀疏特征地图中嵌入全局密集地图信息,采用位移准则、特征准则和传感器量程准则提取必要的观测信息,
然后对观测信息进行去噪、转换,接着根据观测信息的物理意义和机器人位姿估计的不确定性获取环境的全局密集地图,
可视化后得到环境的二值地图、灰度地图或颜色地图.将全局观测地图模型与EKF-SLAM算法相结合,提出了GOE-SLAM算法,采用Car
Park Dataset对GOE-SLAM进行了实验验证,结果表明GOE-SLAM生成了可信的密集地图,并且GOE-SLAM的计算复杂度与EKF-SLAM相当. 相似文献
19.
20.
移动机器人同步定位与地图构建研究进展 总被引:3,自引:0,他引:3
同步定位与地图构建(Simultaneous localization and mapping, SLAM)作为能使移动机器人实现全自主导航的工具近来倍受关注.本文对该领域的最新进展进行综述,特别侧重于一些旨在降低计算复杂度的简化算法的分析上,同时对它们进行分类,并指出其优点和不足.本文首先建立了SLAM问题的一般模型,指出了解决SLAM问题的难点;然后详细分析了基于EKF的一些简化算法和基于其他估计思想的方法;最后,对于多机器人SLAM和主动SLAM等前沿课题进行了讨论,并指出了今后的研究方向. 相似文献