首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was focused on the formation and reliability evaluation of solder joints with different diameters and pitches for flip chip applications. We investigated the interfacial reaction and shear strength between two different solders (Sn-37Pb and Sn-3.0Ag-0.5Cu, in wt.%) and ENIG (Electroless Nickel Immersion Gold) UBM (Under Bump Metallurgy) during multiple reflow. Firstly, we formed the flip chip solder bumps on the Ti/Cu/ENIG metallized Si wafer using a stencil printing method. After reflow, the average solder bump diameters were about 130, 160 and 190 μm, respectively. After multiple reflows, Ni3Sn4 intermetallic compound (IMC) layer formed at the Sn-37Pb solder/ENIG UBM interface. On the other hand, in the case of Sn-3.0Ag-0.5Cu solder, (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 IMCs were formed at the interface. The shear force of the Pb-free Sn-3.0Ag-0.5Cu flip chip solder bump was higher than that of the conventional Sn-37Pb flip chip solder bump.  相似文献   

2.
Three kinds of Sn-Ag-based lead-free solders, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge, and Sn-3.5Ag-0.07Ni (in wt.%), were selected to explore the effect of microelements (Ni and Ge) on the interfacial reaction between the solder and the Cu substrate. The thickness of the interfacial intermetallics formed with the Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge and Sn-3.5Ag-0.07Ni solders is several times that of the Sn-3.5Ag-0.7Cu solder. The added microelements converted the feature of interfacial intermetallics from pebble shape to worm shape. However, the results of x-ray diffraction (XRD) analysis suggest that the interfacial intermetallics formed with both solders have the same crystal structure. The results of energy dispersive spectroscopy (EDS) analysis show that the major interfacial intermetallic formed with the Sn-3.5Ag-0.7Cu solder is Cu6Sn5, while it is (Cux,Ni1−x)6Sn5 with Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge. Ni influences the interfacial intermetallics and plays the influential role on the difference of interfacial reaction rate between liquid solder and solid Cu and the morphology of interfacial intermetallics. Additionally, the growth kinetics of the interfacial intermetallic compounds (IMCs) formed in the systems of Cu/Sn-3.5Ag-0.7Cu and Cu/Sn-3.5Ag-0.07Ni at high-temperature storage was also explored.  相似文献   

3.
The Sn-3.5Ag and Sn-3.0Ag-0.5Cu ball-grid-array solder balls bonded onto Ni/Au metallization exhibited different interfacial morphology after both wetting and solid-state reactions. In contrast to the eutectic-SnPb solder system, both Pb-free systems showed higher solder-ball shear strength after annealing. Reprecipitation of Au as (Au,Ni)Sn4 at the interface, as shown in the eutectic-SnPb solder system, was not observed in both Pb-free solder systems. Instead, Ni3Sn4 and Cu-Sn-Ni-Au intermetallic compounds (IMCs) were found in the SnAg and SnAgCu systems, respectively. In the SnAgCu system, a thick, acicular-Cu-Sn-Ni IMC formed after wetting, but a faceted-Cu-Sn-Ni-Au phase was found with longer annealing. The growth of this interfacial phase in the Sn-3.0Ag-0.5Cu solder system was also slightly inhibited by the addition of Cu, with a formation energy of about 200 kJ/mol.  相似文献   

4.
Soldering with the lead-free tin-base alloys requires substantially higher temperatures (∼235–250°C) than those (213–223°C) required for the current tin-lead solders, and the rates for intermetallic compound (IMC) growth and substrate dissolution are known to be significantly greater for these alloys. In this study, the IMC growth kinetics for Sn-3.7Ag, Sn-0.7Cu, and Sn-3.8Ag-0.7Cu solders on Cu substrates and for Sn-3.8Ag-0.7Cu solder with three different substrates (Cu, Ni, and Fe-42Ni) are investigated. For all three solders on Cu, a thick scalloped layer of η phase (Cu6Sn5) and a thin layer of ε phase (Cu3Sn) were observed to form, with the growth of the layers being fastest for the Sn-3.8Ag-0.7Cu alloy and slowest for the Sn-3.7Ag alloy. For the Sn-3.8Ag-0.7Cu solder on Ni, only a relatively uniform thick layer of η phase (Cu,Ni)6Sn5 growing faster than that on the Cu substrate was found to form. IMC growth in both cases appears to be controlled by grain-boundary diffusion through the IMC layer. For the Fe-42Ni substrate with the Sn-3.8Ag-0.7Cu, only a very thin layer of (Fe,Ni)Sn2 was observed to develop.  相似文献   

5.
After reflow of Sn-3.8Ag-0.7Cu and Sn-20In-2Ag-0.5Cu solder balls on Au/Ni surface finishes in ball grid array (BGA) packages, scallop-shaped intermetallic compounds (Cu0.70Ni0.28Au0.02)6Sn5 (IM1a) and (Cu0.76Ni0.24)6(Sn0.86In0.14)5 (IM1b), respectively, appear at the interfaces. Aging at 100°C and 150°C for Sn-3.8Ag-0.7Cu results in the formation of a new intermetallic phase (Cu0.70Ni0.14Au0.16)6Sn5 (IM2a) ahead of the former IM1a intermetallics. The growth of the newly appeared intermetallic compound, IM2a, is governed by a parabolic relation with an increase in aging time, with a slight diminution of the former IM1a intermetallics. After prolonged aging at 150°C, the IM2a intermetallics partially spall off and float into the solder matrix. Throughout the aging of Sn-20In-2Ag-.5Cu solder joints at 75°C and 115°C, partial spalling of the IM1b interfacial intermetallics induces a very slow increase in thickness. During aging at 115°C for 700 h through 1,000 h, the spalled IM1b intermetallics in the solder matrix migrate back to the interfaces and join with the IM1b interfacial intermetallics to react with the Ni layers of the Au/Ni surface finishes, resulting in the formation and rapid growth of a new (Ni0.85Cu0.15)(Sn0.71In0.29)2 intermetallic layer (IM2b). From ball shear tests, the strengths of the Sn-3.8Ag-0.7Cu and Sn-20In-2Ag-0.5Cu solder joints after reflow are ascertained to be 10.4 N and 5.4 N, respectively, which drop to lower values after aging. An erratum to this article is available at .  相似文献   

6.
The 0.2Co + 0.1Ni dual additives were used to dope a Sn-3.5Ag solder matrix to modify the alloy microstructure and the solder joint on an organic solderability preservative (OSP) Cu pad. The refined microstructure of the Sn-3.5Ag-0.2Co-0.1Ni solder alloy or the reduced β-Sn size was attributed to the depressed undercooling achieved by the Co-Ni addition. After soldering on the OSP Cu pad, a large Ag3Sn plate was formed at the Sn-3.5Ag/OSP solder joint, whereas it was absent at the Sn-3.5Ag-0.2Co-0.1Ni/OSP solder joints. With isothermal aging at 150°C, large Ag3Sn plates formed at the Sn-3.5Ag/OSP solder joint were still observed. A coarsened and dispersed Ag3Sn phase was found in the solder joints with Co-Ni additions as well. Compared to Cu6Sn5, the (Co,Ni)Sn2 intermetallic compound showed much lower microhardness values. However, (Co,Ni)Sn2 hardness was comparable to that of the Ag3Sn phase. Pull strength testing of Sn-3.5Ag-0.2Co-0.1Ni/OSP revealed slightly lower values than for Sn-3.5Ag/OSP during aging. Such results are thought be due to the phase transformation of (Co,Ni)Sn2 to (Cu,Co,Ni)6Sn5.  相似文献   

7.
The formation and growth of intermetallics at the interface between Sn-Ag-(Cu) alloy balls and Au/Ni-6P plating were experimentally examined as a function of soldering period. Joint strengths were also evaluated by a ball pull test. For the joint with Sn-3.5Ag, the primary reaction product of Ni3Sn4 exhibits growth and shrinkage in thickness repeatedly with a passage of reaction time up to 30 min, while the Ni3SnP reaction layer monotonously increases its thickness without fluctuation. In the cases of the joints with Cu bearing solder, Sn-3Ag-0.5Cu and Sn-3.5Ag-0.8Cu, a single η-(Cu,Ni)6Sn5 interface layer grows by fast Cu segregation from liquid solder to the interface layer on soldering. For all the soldered joints, a P-rich layer appears at the surface region of a Ni-6P plating layer by Ni depletion to form those intermetallic compounds at interfaces. The growth rate of a P-rich layer for Sn-3.5Ag is faster by about 4–8 times than those of the Sn-Ag-Cu. The presence of Cu in solder enhances the formation of the Cu6Sn5 intermetallic layer at the interface resulting in prevention of Ni diffusion to liquid solder. For all the soldered joints, coarsened reaction interfaces decrease the joint strengths.  相似文献   

8.
This paper illustrates the influence of Au addition on the phase equilibria of Sn-Ag-Cu (SAC) near-eutectic alloys and on the interface reaction with the Cu substrate. From the thermal and microstructural characterization of Sn-3.8Ag-0.7Cu alloys containing various amounts of Au, it is found that the Au promotes the formation of a quaternary-eutectic reaction at 204.5°C ± 0.3°C. The equilibrium phases in the quaternary-eutectic microstructure are found to be AuSn4, Ag3Sn, βSn, and Cu6Sn5. While the addition of Au to Sn-3.8Ag-0.7Cu alloys is also found to increase liquidus temperature and the temperature ranges of the phase equilibria field for primary phases, such influences from Au are found to be less pronounced when the alloys were reacted with the Cu substrate. Because of the formation of the Au-Cu-Sn-ternary interface intermetallic, it is found that a majority of Au added to the solder is drained from the melt. The drainage of Au reduces the impact of Au on the phase equilibria of the solder alloys in the joint. It is further found that the involvement of Au in the interface reaction results in a change of the interface phase morphology from the conventional scallop structure to a compositelike structure consisting of (AuCu)6Sn5 grains and finely dispersed, βSn islands.  相似文献   

9.
We developed a new lead-free solder alloy, an Sn-Ag-Cu base to which a small amount of Ni and Ge is added, to improve the mechanical properties of solder alloys. We examined creep deformation in bulk and through-hole (TH)␣form for two lead-free solder alloys, Sn-3.5Ag-0.5Cu-Ni-Ge and Sn-3.0Ag-0.5Cu, at elevated temperatures, finding that the creep rupture life of the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy was over three times better than that of the Sn-3.0Ag-0.5Cu solder at 398 K. Adding Ni to the solder appears to make microstructural development finer and more uniform. The Ni added to the solder readily combined with Cu to form stable intermetallic compounds of (Cu, Ni)6Sn5 capable of improving the creep behavior of solder alloys. Moreover, microstructural characterization based on transmission electron microscopy analyses observing creep behavior in detail showed that such particles in the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy prevent dislocation and movement.  相似文献   

10.
Even though electroless Ni-P and Sn-Ag-Cu solders are widely used materials in flip-chip bumping technologies, interfacial reactions of the ternary Cu-Ni-Sn system are not well understood. The growth of intermetallic compounds (IMCs) at the under bump metallization (UBM)/solder interface can affect solder-joint reliability, so analysis of IMC phases and understanding their growth kinetics are important. In this study, interfacial reactions between electroless Ni-P UBM and the 95.5Sn-4.0Ag-0.5Cu alloy were investigated, focusing on identification of IMC phases and IMC growth kinetics at various reflowing and aging temperatures and times. The stable ternary IMC initially formed at the interface after reflowing was the (Cu,Ni)6Sn5 phase. However, during aging, the (Cu,Ni)6Sn5 phase slowly changed into the quaternary IMC composed of Cu, Ni, Sn, and a small amount of Au. The Au atoms in the quaternary IMC originated from immersion Au plated on electroless Ni-P UBM. During further reflowing or aging, the (Ni,Cu)3Sn4 IMC started forming because of the limited Cu content in the solder. Morphology, composition, and crystal structure of each IMC were identified using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Small amounts of Cu in the solder affect the types of IMC phases and the amount of the IMC. The activation energies of (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 IMCs were used to estimate the growth kinetics of IMCs. The growth of IMCs formed in aging was very slow and temperature-dependent compared to IMCs formed in reflow because of the higher activation energies of IMCs in aging. Comparing activation energies of each IMC, growth mechanism of IMCs at electroless Ni-P/SnAgCu solder interface will be discussed.  相似文献   

11.
Sn-Ag-Cu solder is a promising candidate to replace conventional Sn-Pb solder. Interfacial reactions for the flip-chip Sn-3.0Ag-(0.5 or 1.5)Cu solder joints were investigated after aging at 150°C. The under bump metallization (UBM) for the Sn-3.0Ag-(0.5 or 1.5)Cu solders on the chip side was an Al/Ni(V)/Cu thin film, while the bond pad for the Sn-3.0Ag-0.5Cu solder on the plastic substrate side was Cu/electroless Ni/immersion Au. In the Sn-3.0Ag-0.5Cu joint, the Cu layer at the chip side dissolved completely into the solder, and the Ni(V) layer dissolved and reacted with the solder to form a (Cu1−y,Niy)6Sn5 intermetallic compound (IMC). For the Sn-3.0Ag-1.5Cu joint, only a portion of the Cu layer dissolved, and the remaining Cu layer reacted with solder to form Cu6Sn5 IMC. The Ni in Ni(V) layer was incorporated into the Cu6Sn5 IMC through slow solid-state diffusion, with most of the Ni(V) layer preserved. At the plastic substrate side, three interfacial products, (Cu1−y,Niy)6Sn5, (Ni1−x,Cux)3Sn4, and a P-rich layer, were observed between the solder and the EN layer in both Sn-Ag-Cu joints. The interfacial reaction near the chip side could be related to the Cu concentration in the solder joint. In addition, evolution of the diffusion path near the chip side in Sn-Ag-Cu joints during aging is also discussed herein.  相似文献   

12.
The microstructure of Sn-37Pb and Sn-8Zn-3Bi solders and the full strength of these solders with an Au/Ni/Cu pad under isothermal aging conditions were investigated. The full strengths tended to decrease as the aging temperature and time increased, regardless of the properties of the solders. The Sn-8Zn-3Bi had higher full strength than Sn-37Pb. In the Sn-37Pb solder, Ni3Sn4 compounds and irregular-shaped Pb-rich phase were embedded in a β-Sn matrix. The Ni3Sn4 compounds were observed at the interface between the solder and pad. The microstructure of the as-reflowed Sn-8Zn-3Bi solder mainly consists of the β-Sn matrix scattered with Zn-rich phase. Zinc first reacted with Au and then was transformed to the AuZn compound. With aging, Ni5Zn21 compounds were formed at the Ni layer. Finally, a Ni5Zn21 phase, divided into three layers, was formed with column-shaped grains, and the thicknesses of the layers were changed.  相似文献   

13.
The interfacial reactions between Sn-3.0 Ag-0.7 Cu solder and backside metallizations on two semiconductor devices, field-effect transistors (FET) and diode, are studied. The metallizations on both devices were vacuum evaporated Ti/Ni/Ag. The intermetallic compounds (IMC) formed near the diode/solder and FET/solder joints during reflow, and the interdiffusion processes during solid state aging are characterized by the quantitative energy dispersive x-ray analysis and the x-ray mapping technique in a scanning electron microscope. Two different intermetallic compounds are found near the diode/solder interface. Both are in the form of particles, not a continuous layer, and are referred to as IMC-I and IMC-II. IMC-I corresponds to Ni3Sn4, with Cu atoms residing on the Ni sublattice. It is uncertain whether IMC-II is Cu6Sn5 or a Cu-Ni-Sn ternary phase. Near the as-reflowed FET/solder interface, both isolated scallops and a skeleton-like layer of Ni3Sn4 are observed. The primary microstructural dynamics during solid-state aging are the coarsening of IMCs and the reactions involving the Ni-and Ti-layer with Sn and Au. While the reaction with the Ni-layer yields only Ni3Sn4 intermetallic, the reaction involving the Ti-layer suggests the formation of Ti-Sn and Au-Sn-Ti intermetallics. The latter is due to the diffusion of Au from the substrate side to the die side. It is postulated that the kinetics of the Au-Sn-Ti layer is primarily governed by the diffusion of Au through the Ni3Sn4 layer by a grain boundary mechanism.  相似文献   

14.
Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying   总被引:1,自引:0,他引:1  
A new lead free alloy, Sn-6Bi-2Ag-0.5Cu, has been developed by mechanical alloying and has great potential as a lead-free solder system. Initial trials on the manufacture of solder joints with this alloy revealed that a high quality bond with copper could be formed. Its melting range of 193.87°C to 209.88°C is slightly higher than that of eutectic tin-lead solder. Examination of the microstructure of the as-soldered joints revealed that it mainly consists of small bismuth (1 μm to 2 μm) and Ag3Sn (1 μm) particles finely dispersed in a nearly pure tin matrix with a small amount of η-Cu6Sn5 particles. The Cu-Sn intermetallic compound (IMC) layer formed at solder-copper interface is the η-Cu6Sn5 phase with grain size of 2 μm. The shear strength of the solder joint is higher than that of Sn-37Pb or Sn-3.5Ag. Under shear loading, fracture occurred at IMC layer-solder interface as well as in the bulk of solder.  相似文献   

15.
A comparative study of solid/solid interfacial reactions of electroless Ni-P (15 at.% P) with lead-free solders, Sn-0.7Cu, Sn-3.5Ag, Sn-3.8Ag-0.7Cu, and pure Sn, was carried out by performing thermal aging at 150°C up to 1000 h. For pure Sn and Sn-3.5Ag solder, three distinctive layers, Ni3Sn4, SnNiP, and Ni3P, were observed in between the solder and electroless Ni-P; while for Sn-0.7Cu and Sn-3.8Ag-0.7Cu solders, two distinctive layers, (CuNi)6Sn5 and Ni3P, were observed. The differences in morphology and growth kinetics of the intermetallic compounds (IMCs) at the interfaces between electroless Ni-P and lead-free solders were investigated, as well as the growth kinetics of the P-enriched layers underneath the interfacial IMC layers. With increasing aging time, the coarsening of interfacial Ni3Sn4 IMC grains for pure Sn and Sn-3.5Ag solder was significantly greater than that of the interfacial (CuNi)6Sn5 IMC grains for Sn-0.7Cu and Sn-3.8Ag-0.7Cu solders. Furthermore, the Ni content in interfacial (CuNi)6Sn5 phase slightly increased during aging. A small addition of Cu (0.7 wt.%) resulted in differences in the type, morphology, and growth kinetics of interfacial IMCs. By comparing the metallurgical aspects and growth kinetics of the interfacial IMCs and the underneath P-enriched layers, the role of initial Cu and Ag in lead-free solders is better understood.  相似文献   

16.
This study was concerned with the effect of thermal aging on the impact properties of solder joints. Three kinds of solders, conventional Sn-37Pb solder, Sn-3.8Ag-0.7Cu solder, and Sn-3.8Ag-0.7Cu doped with rare-earth (RE) elements, were selected to manufacture joint specimens for the Charpy impact test. U-notch specimens were adopted and isothermally aged at 150°C for 100 h and 1000 h, and then impacted by using a pendulum-type impact tester at room temperature. The Sn-37Pb solder joints exhibited higher performance in terms of impact absorbed energy in the as-soldered and 100 h thermally aged conditions. Interestingly, the Sn-3.8Ag-0.7Cu solder joints exhibited improved performance for the impact value after 1000 h of thermal aging. For the Sn-37Pb and Sn-3.8Ag-0.7Cu solder joints, the impact absorbed energies initially increased when the storage duration was limited to 100 h, and then gradually decreased with its further increase. For the Sn-3.8Ag-0.7Cu-RE specimens, impact performance decreased directly with increasing thermal aging. Furthermore, scanning electron microscopy (SEM) observation showed that the fracture paths were focused on the interface zone for the three kinds of joints in the aged conditions. For the Sn-37Pb joints, the fracture surfaces mainly presented a ductile fracture mode. For the Sn-3.8Ag-0.7Cu joints, with microstructure coarsening, crack propagation partly shifted towards the Sn/Cu6Sn5 interface. Compared with the 100 h aged joints, the area fraction of intergranular fracture of Sn grains on the Sn-3.8Ag-0.7Cu fracture surfaces was increased when the aging time was 1000 h. On the contrary, the fracture morphologies of Sn-3.8Ag-0.7Cu-RE were mainly brittle as thermal aging increased. Thus, an interrelationship between impact energy value and fracture morphology was observed.  相似文献   

17.
After Sn-20In-0.8Cu solder balls are reflowed on a ball grid array (BGA) substrate (substrate A) with an Au/Ni surface finish, scallop-shaped intermetallic compounds with a composition of 0.83[Cu6(Sn0.87In0.13)5] + 0.17[Ni3(Sn0.87In0.13)4] are formed at the solder/pad interface. The distribution of the intermetallics is not altered by gravity or by multiple reflows of the solder joints. As another substrate (substrate B) is further attached onto the primary reflowed BGA assembly to form a sandwich structure subjected to subsequent multiple reflows, the Cu6(Sn0.87In0.13)5 interfacial intermetallic scallops remain still on the side of substrate A while many Au(In0.91Sn0.09)2 intermetallics of cubic shape appear near the solder/Ni interface on the side of substrate B. When the Sn-20In-0.8Cu solder balls are assembled simultaneously in between two substrates (A and B), Au(In0.91Sn0.09)2 intermetallic cubes of equal proportion are observed to form on both sides of the assembly. In summarizing the results, it is proposed that the diffusion of Cu atoms in the Sn-20In-0.8Cu solder toward the Ni layers after Au thin-film dissolution on Au/Ni surface finishes led to the formation of Cu6(Sn0.87Zn0.17)5 intermetallic compounds, which prevailed over the gravitational effect so that no intermetallic sedimentation in the liquid solder would occur. The appearance of Au(In0.91Sn0.09)2 at the Ni/Sn-20In-0.8Cu interfaces was hindered by the preferential formation of Cu6(Sn0.87Zn0.17)5 until the Cu atoms in the Sn-20In-0.8Cu solder matrix were consumed to a lower content via the attachment of a second substrate to the assembly.  相似文献   

18.
As-cast Sn-0.4Co-0.7Cu solder contains both (Cu0.98Co0.02)6Sn5 and (Co0.85Cu0.15) Sn3 intermetallic phases in the matrix. After reflowing, the Au thin film in the electroless Ni/immersion Au (ENIG) surface-finished Sn-0.4Co-0.7Cu solder ball grid array (BGA) packages dissolved rapidly into the solder matrix to form AuSn4 intermetallics, and a thin layer of (Cu0.57Ni0.35Au0.08)6Sn5 intermetallic compound appeared at the solder/pad interface, growing very slowly during aging at 100°C. Increasing the aging temperature to 150°C caused the formation of a new intermetallic layer, (Ni0.79Cu0.21)3Sn4, at the (Cu0.57Ni0.35Au0.08)6Sn5/Ni interface. The reflowed Sn-0.4Co-0.7Cu BGA packages have a ball shear strength of 6.8 N, which decreases to about 5.7 N and 5.5 N after aging at 100°C and 150°C, respectively. The reflowed and aged solder joints fractured across the solder balls with ductile characteristics in ball shear tests.  相似文献   

19.
The growth kinetics of intermetallic compound layers formed between four hot-dipped solder coatings and copper by solid state, thermal aging were examined. The solders were l00Sn, 50In-50Sn, 100In, and 63Sn-37Pb (wt.%); the substrate material was oxygen-free, high conductivity Cu. The total intermetallic layer of the 100Sn/Cu system exhibited a combination of parabolic growth at lower aging temperatures and t0.42 growth at the higher temperatures. The combined apparent activation energy was 66 kJ/mol. These results are compared to the total layer growth observed with the 63Sn-37Pb/Cu system which showed parabolic kinetics at similar temperatures and an apparent activation energy of 45 kJ/mol. Both 100Sn and 63Sn-37Pb diffusion couples showed a composite intermetallic layer comprised of Cu3Sn and Cu6Sn5. The intermetallic compound layer formed between In and Cu changed from a CuIn2 stoichiometry at short annealing times to a Cu57In43 composition at longer periods. The growth kinetics were parabolic with an apparent activation energy of 20 kJ/mol. The intermetallic layer growth of the 50In-50Sn/Cu system exhibited extreme variations in the layer thicknesses which prohibited a quantitative assessment of the growth kinetics. The layer was comprised of two compounds: Cu26Sn13In8 which was the dominant phase and a thin layer of Cu17Sn9In24 adjacent to the solder.  相似文献   

20.
The intermetallic compound SnTe rapidly formed at interfaces between p-type bismuth telluride (Bi0.5Sb1.5Te3) thermoelectric materials and lead-free solders. The intermetallic compound influences the mechanical properties of the joints and the reliability of the thermoelectric modules. Various lead-free solder alloys, Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu, and Sn-2.5Ag-2Ni, were used to investigate the interfacial reactions. The results thus obtained show that Ag and Cu preferentially diffused into the Te-rich phase in Bi0.5Sb1.5Te3, so layers of Ag-Te and Cu-Te compounds could not form an effective diffusion barrier. Electroless nickel-phosphorus was plated at the interfaces to serve as a diffusion barrier, and the (Cu,Ni)6Sn5 compound formed instead of SnTe. Furthermore, the intermetallic compound NiTe formed between nickel- phosphorus and Bi0.5Sb1.5Te3 and also served as a diffusion barrier. A plot of thickness as a function of annealing time yielded the growth kinetics of the intermetallic compounds in the thermoelectric material systems. The activation energy for the growth of the NiTe intermetallic compound is 111 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号