首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report for the first time drive current enhancement and higher mobilities than the universal mobility for SiO/sub 2/ on Si in compressively strained Si/sub 1-x/Ge/sub x/-on-Si surface channel PMOSFETs with HfO/sub 2/ gate dielectrics, for gate lengths (L/sub G/) down to 180 nm. Thirty six percent drive current enhancement was achieved for Si/sub 0.8/Ge/sub 0.2/ channel PMOSFETs compared to Si PMOSFETs with HfO/sub 2/ gate dielectric. We demonstrate that using Si/sub 1-x/Ge/sub x/ in the channel may be one way to recover the mobility degradation due to the use of HfO/sub 2/ on Si.  相似文献   

2.
The magnitude of the V/sub T/ instability in conventional MOSFETs and MOS capacitors with SiO/sub 2//HfO/sub 2/ dual-layer gate dielectrics is shown to depend strongly on the details of the measurement sequence used. By applying time-resolved measurements (capacitance-time traces and charge-pumping measurements), it is demonstrated that this behavior is caused by the fast charging and discharging of preexisting defects near the SiO/sub 2//HfO/sub 2/ interface and in the bulk of the HfO/sub 2/ layer. Based on these results, a simple defect model is proposed that can explain the complex behavior of the V/sub T/ instability in terms of structural defects as follows. 1) A defect band in the HfO/sub 2/ layer is located in energy above the Si conduction band edge. 2) The defect band shifts rapidly in energy with respect to the Fermi level in the Si substrate as the gate bias is varied. 3) The rapid energy shifts allows for efficient charging and discharging of the defects near the SiO/sub 2//HfO/sub 2/ interface by tunneling.  相似文献   

3.
Bi-layer gate stacks consisting of a HfO/sub 2/ and an interfacial layer are fabricated by remote plasma oxidation (RPO) of Hf metal deposited on an Si substrate. Hf metal is fully oxidized by the RPO even at a temperature as low as 400/spl deg/C due to radical oxygens, leading to an improvement in the quality of HfO/sub 2/ with less impact to the interfacial layer growth. An insufficient oxidation leads to a deterioration of mobility with increasing interface traps and positive bias temperature instability, which is likely caused by the oxygen vacancies acting as traps induced by the remaining Hf metal. The SiO/sub 2/-like interface improves the mobility with reduced interface states. Full oxidation and the controlled SiO/sub 2/-like interface demonstrate RPO as a promising way for gate-stack optimization.  相似文献   

4.
We have studied ultrathin Al/sub 2/O/sub 3/ and HfO/sub 2/ gate dielectrics on Ge grown by ultrahigh vacuum-reactive atomic-beam deposition and ultraviolet ozone oxidation. Al/sub 2/O/sub 3/-Ge gate stack had a t/sub eq//spl sim/23 /spl Aring/, and three orders of magnitude lower leakage current compared to SiO/sub 2/. HfO/sub 2/-Ge allowed even greater scaling, achieving t/sub eq//spl sim/11 /spl Aring/ and six orders of magnitude lower leakage current compared to SiO/sub 2/. We have carried out a detailed study of cleaning conditions for the Ge wafer, dielectric deposition condition, and anneal conditions and their effect on the electrical properties of metal-gated dielectric-Ge capacitors. We show that surface nitridation is important in reducing hysteresis, interfacial layer formation and leakage current. However, surface nitridation also introduces positive trapped charges and/or dipoles at the interface, resulting in significant flatband voltage shifts, which are mitigated by post-deposition anneals.  相似文献   

5.
The effects of high-temperature (600/spl deg/C) anneal in a dilute deuterium (N/sub 2/ : D/sub 2/= 96 : 4) atmosphere was first investigated and evaluated in comparison to high-temperature forming gas (N/sub 2/ : H/sub 2/= 96 : 4) anneal (600/spl deg/C) and nonanneal samples. The high-temperature deuterium anneal was as effective as the forming gas anneal in improving MOSCAP and MOSFET characteristics such as the C-V curve, drain current, subthreshold swing, and carrier mobility. These can be attributed to the improved interface quality by D/sub 2/ atoms. However, unlike the forming gas anneal, the deuterium anneal provided the hafnium oxide (HfO/sub 2/) gate dielectric MOSFET with better reliability characteristics such as threshold voltage (V/sub T/) stability under high voltage stress.  相似文献   

6.
The performance improvement of ZnO thin-film transistors (TFTs) using HfO2/Ta2O5 stacked gate dielectrics was demonstrated. The ZnO TFTs exhibited transistor behaviour over the range 0-10 V; the field effect mobility, subthreshold slope and on/off ratio were measured to be 1.3 cm2 V-1 s-1, 0.5 V/decade and ~106, respectively.  相似文献   

7.
Breakdown voltage distribution, Weibull slopes, and area scaling factors have been investigated for HfO/sub 2/ gate dielectrics in order to gain a better understanding of the breakdown mechanism. Weibull slope of thick HfO/sub 2/ (e.g., /spl beta//spl ap/4 for EOT=2.5 nm) is smaller than that of SiO/sub 2/ with similar physical thickness, whereas /spl beta/ of the thinner HfO/sub 2/ (e.g., /spl beta//spl ap/2 for EOT=1.4 nm) is similar to that of SiO/sub 2/. The implication of the thickness dependence of /spl beta/ is discussed.  相似文献   

8.
We present a physical modeling of tunneling currents through ultrathin high-/spl kappa/ gate stacks, which includes an ultrathin interface layer, both electron and hole quantization in the substrate and gate electrode, and energy band offsets between high-/spl kappa/ dielectrics and Si determined from high-resolution XPS. Excellent agreements between simulated and experimentally measured tunneling currents have been obtained for chemical vapor deposited and physical vapor deposited HfO/sub 2/ with and without NH/sub 3/-based interface layers, and ALD Al/sub 2/O/sub 3/ gate stacks with different EOT and bias polarities. This model is applied to more thermally stable (HfO/sub 2/)/sub x/(Al/sub 2/O/sub 3/)/sub 1-x/ gate stacks in order to project their scalability for future CMOS applications.  相似文献   

9.
Weibull slopes, area scaling factors, and lifetime projection have been investigated for both soft breakdown and hard breakdown for the first time, in order to gain a better understanding of, the breakdown mechanism of HfO/sub 2/ gate dielectrics. The Weibull slope /spl beta/ of the hard breakdown for both the area dependence and the time-to-dielectric-breakdown distribution was found to be /spl beta/ = 2, whereas that of the soft breakdown was about 1.4. Estimated ten-year lifetime has been projected to be -2 V.  相似文献   

10.
For the first time, we successfully fabricated and demonstrated high performance metal-insulator-metal (MIM) capacitors with HfO/sub 2/-Al/sub 2/O/sub 3/ laminate dielectric using atomic layer deposition (ALD) technique. Our data indicates that the laminate MIM capacitor can provide high capacitance density of 12.8 fF//spl mu/m/sup 2/ from 10 kHz up to 20 GHz, very low leakage current of 3.2 /spl times/ 10/sup -8/ A/cm/sup 2/ at 3.3 V, small linear voltage coefficient of capacitance of 240 ppm/V together with quadratic one of 1830 ppm/V/sup 2/, temperature coefficient of capacitance of 182 ppm//spl deg/C, and high breakdown field of /spl sim/6 MV/cm as well as promising reliability. As a result, the HfO/sub 2/-Al/sub 2/O/sub 3/ laminate is a very promising candidate for next generation MIM capacitor for radio frequency and mixed signal integrated circuit applications.  相似文献   

11.
In this letter, a prototype of conductive atomic force microscope with enhanced electrical performance has been used to separately investigate the effect of the electrical stress on the SiO/sub 2/ and the HfO/sub 2/ layers of a high-/spl kappa/ gate stack. Charge trapping in HfO/sub 2/ native defects and degradation of both layers have been observed, depending on the stress level.  相似文献   

12.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-K dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-K dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/ A(2-5 /spl times/ 10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8 /spl times/ 10/sup 17/ cm/sup -3/ eV/sup -1/ to 1, 3 /spl times/ 10/sup 19/ cm/sup -3/ eV/sup -1/ somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-K/gate stacks, relative comparison among them and to the Si-SiO/sub 2/ system.  相似文献   

13.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

14.
P/sup +/-poly-Si gate MOS transistors with atomic-layer-deposited Si-nitride/SiO/sub 2/ stack gate dielectrics (EOT=2.50 nm) have been fabricated. Similar to the reference samples with SiO/sub 2/ gate dielectrics (T/sub ox/=2.45 nm), clear saturation characteristics of drain current are obtained for the samples with stack gate dielectrics. Identical hole-effective mobility is obtained for the samples with the SiO/sub 2/ and the stack gate dielectrics. The maximum value of hole-effective mobility is the same (54 cm/sup 2//Vs) both for the stack and the SiO/sub 2/ samples. Hot carrier-induced mobility degradation in transistors with the stack gate dielectrics was found to be identical to that in transistors with the SiO/sub 2/ gate dielectrics. In addition to the suppression of boron penetration, better TDDB characteristics, and soft breakdown free phenomena for the stack dielectrics (reported previously), the almost equal effective mobility (with respect to that of SiO/sub 2/ dielectrics) has ensured the proposed stack gate dielectrics to be very promising for sub-100-nm technology generations.  相似文献   

15.
Metal-insulator-metal (MIM) capacitors with (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ high-/spl kappa/ dielectric films were investigated for the first time. The results show that both the capacitance density and voltage/temperature coefficients of capacitance (VCC/TCC) values decrease with increasing Al/sub 2/O/sub 3/ mole fraction. It was demonstrated that the (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitor with an Al/sub 2/O/sub 3/ mole fraction of 0.14 is optimized. It provides a high capacitance density (3.5 fF//spl mu/m/sup 2/) and low VCC values (/spl sim/140 ppm/V/sup 2/) at the same time. In addition, small frequency dependence, low loss tangent, and low leakage current are obtained. Also, no electrical degradation was observed for (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitors after N/sub 2/ annealing at 400/spl deg/C. These results show that the (HfO/sub 2/)/sub 0.86/(Al/sub 2/O/sub 3/)/sub 0.14/ MIM capacitor is very suitable for capacitor applications within the thermal budget of the back end of line process.  相似文献   

16.
In this paper, silicon (Si) nanocrystal memory using chemical vapor deposition (CVD) HfO/sub 2/ high-k dielectrics to replace the traditional SiO/sub 2/ tunneling/control dielectrics has been fabricated and characterized for the first time. The advantages of this approach for improved nanocrystal memory operation have also been studied theoretically. Results show that due to its unique band asymmetry in programming and retention mode, the use of high-k dielectric on Si offers lower electron barrier height at dielectric/Si interface and larger physical thickness, resulting in a much higher J/sub g,programming//J/sub g,retention/ ratio than that in SiO/sub 2/ and therefore faster programming and longer retention. The fabricated device with CVD HfO/sub 2/ shows excellent programming efficiency and data-retention characteristics, thanks to the combination of a lower electron barrier height and a larger physical thickness of HfO/sub 2/ as compared with SiO/sub 2/ of the same electrical oxide thickness (EOT). It also shows clear single-electron charging effect at room temperature and superior data endurance up to 10/sup 6/ write/erase cycles.  相似文献   

17.
Ting  W. Ahn  J.H. Kwong  D.L. 《Electronics letters》1991,27(12):1046-1047
Ultrathin (58 AA equivalent oxide thickness) stacked Si/sub 3/N/sub 4//SiO/sub 2/ (NO) films with the bottom oxide prepared by rapid thermal oxidation (RTO) in O/sub 2/ and the top nitride deposited by rapid thermal processing chemical vapour deposition (RP-CVD) were fabricated and studied. Results show that the charge trapping and leakage current of the stacked films are comparable to those of pure SiO/sub 2/ and low-field breakdown events are significantly reduced. By scaling down the top nitride thickness the commonly observed flat-band voltage instability of MNOS devices was minimised, but the low-defect property was still preserved.<>  相似文献   

18.
This paper describes an extensive experimental study of TiN/HfO/sub 2//SiGe and TiN/HfO/sub 2//Si cap/SiGe gate stacked-transistors. Through a careful analysis of the interface quality (interface states and roughness), we demonstrate that an ultrathin silicon cap is mandatory to obtain high hole mobility enhancement. Based on quantum mechanical simulations and capacitance-voltage characterization, we show that this silicon cap is not contributing any silicon parasitic channel conduction and degrades by only 1 /spl Aring/ the electrical oxide thickness in inversion. Due to this interface optimization, Si/sub 0.72/Ge/sub 0.28/ pMOSFETs exhibit a 58% higher mobility at high effective field (1 MV/cm) than the universal SiO/sub 2//Si reference and a 90% higher mobility than the HfO/sub 2//Si reference. This represents one of the best hole mobility results at 1 MV/cm ever reported with a high-/spl kappa//metal gate stack. We thus validate a possible solution to drastically improve the hole mobility in Si MOSFETs with high-/spl kappa/ gate dielectrics.  相似文献   

19.
This authors present the effect of Al inclusion in HfO/sub 2/ on the crystallization temperature, leakage current, band gap, dielectric constant, and border traps. It has been found that the crystallization temperature is significantly increased by adding Al into the HfO/sub 2/ film. With an addition of 31.7% Al, the crystallization temperature is about 400-500/spl deg/C higher than that without Al. This additional Al also results an increase of the band gap of the dielectric from 5.8 eV for HfO/sub 2/ without Al to 6.5 eV for HfAlO with 45.5% Al and a reduced dielectric constant from 19.6 for HfO/sub 2/ without Al to 7.4 for Al/sub 2/O/sub 3/ without Hf. Considering the tradeoff among the crystallization temperature, band gap, and dielectric constant, we have concluded that the optimum Al concentration is about 30% for conventional self-aligned CMOS gate processing technology.  相似文献   

20.
Dependence of CMOS performance on silicon crystal orientation of [100], [111], and [110] has been investigated with the equivalent gate dielectric thickness less than 3 nm. Hole mobility enhancement of /spl ges/160% has been observed for both oxynitride and HfO/sub 2/ gate dielectrics on [110] surfaces compared with [100]. CMOS drive current is nearly symmetric on [110] orientation without any degradation of subthreshold slope. For HfO/sub 2/ gate dielectrics, an approximately 68% enhancement of pMOSFET drive current has been demonstrated on [110] substrates at L/sub poly/=0.12 /spl mu/m, while current reduction in nMOS is around 26%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号