首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The low-temperature dielectric and pyroelectric properties of pyrochlore Cd2Nb2O7 ceramics have been investigated over the temperature range from 10 to 300 K. Dielectric data confirmed that two ferroelectric transitions occurred in the Cd2Nb2O7 ceramics at temperatures near 80 and 192 K. The higher-temperature ferroelectric transition is complex, with evidence for three separate transitions occurring within a narrow temperature range. The temperature and frequency dependencies of the dielectric constant were consistent with both second-order (diffuse) and improper ferroelectric (ferroelastic) effects. Pyroelectric data also confirmed the multiple-transition behavior, with anomalies in the pyroelectric coefficient at temperatures corresponding to the onset of the diffuse ferroelectric transition and the ferroelastic effect. Dielectric loss data (analyzed by both Arrhenius and Cole-Cole formalisms) indicated the presence of three separate relaxation-type dielectric loss mechanisms in this temperature range. Unambiguous explanations for the observed dielectric and pyroelectric phenomena could not be made, but domain effects are believed to be responsible for at least part of the complex nature of the ferroelectric transitions in this material.  相似文献   

2.
Perovskite-phase developments in partially/fully substituted (Ba,Pb)(Zn1/3Nb2/3)O3, synthesized via B-site precursor routes, were investigated. The pyrochlore structure, present at no barium content, was immediately replaced by perovskite with a small amount (≥8 at.%) of barium substitution. Variations in the lattice parameters of the pyrochlore and perovskite structures were studied. The weak-field radio-frequency dielectric constants and losses of the system ceramics were examined. A highest maximum dielectric constant of 9000 (76°C, 1 MHz) was observed at 8 at.% barium substitution. The dielectric-constant spectra were analyzed further in terms of diffuseness characteristics (e.g., diffuseness exponent and degree of diffuseness). The dielectric hysteresis loops of the ceramics were measured. The microstructures of the sintered ceramics also were observed.  相似文献   

3.
The material coefficients of "soft" and "hard" lead zirconate titanate (PZT) ceramics were determined as complex values by the nonlinear least-squares-fitting of immittance data measured for length-extensional bar resonators. The piezoelectric d -constant should be a complex value to obtain a best fitting between observed and calculated results. Because the elastic, dielectric, and piezoelectric losses determined in this process were not "intrinsic" losses, a calculation process to evaluate the "intrinsic" losses was proposed. It was confirmed that the intrinsic losses were smaller than the corresponding extrinsic losses. The intrinsic piezoelectric loss existed in both soft and hard PZTs; ∼50% of the loss of piezoelectric d -constant was derived from the elastic and dielectric losses. The most notable difference between the soft and hard PZTs was observed in their elastic losses.  相似文献   

4.
BaTiO3 (BT) addition vastly alters the dielectric behavior of lead zinc magnesium niobate (PZMN) relaxor ferroelectrics. Heat treatment, including the sintering process, influences the dielectric properties through changes in the distribution of heterogeneous compositions and in the extent of diffused phase transition. With more than 15 mol% BaTiO3 addition, two cubic phases composed of Ba-rich and Ti-rich PZMN substances exist. The destruction of the BaTiO3 phase and reconstruction of Ba-rich and Ti-rich regions are initiated during heat treatment, and the extent of destruction and reconstruction determines the dielectric properties of the PZMN ceramics. The BT-rich PZMN phase, which occurs with higher BaTiO3 addition, plays a less important role in the present investigation.  相似文献   

5.
Lead magnesium niobate (PMN) and lead iron niobate (PFN) were prepared by the semiwet hydroxide route, and their dielectric properties were measured in temperature ranges around their peak dielectric constants. The dielectric constant of PFN was much larger as compared with that of PMN sintered at the same temperature. The dielectric properties of PMN and PFN are compared and explained on the basis of their structure development.  相似文献   

6.
Composites with 0–3 connectivity were fabricated from lead zirconate titanate (PZT) and phenolic resin powders. These composites were investigated for dielectric and piezoelectric properties with variations in active particle density and PZT-polymer interface porosity. The dependence of dielectric and piezolectric properties on interface porosity is discussed, especially in terms of porosity factors. The dependence of the piezoelectric constant on interface porosity was greater than that of the dielectric constant. The interface pores play the role of a stress buffer. Thus local stress applied on PZT particles in the composites was remarkably diminished. When particle porosity was high, the dependence of the dielectric and piezoelectric constants on interface porosity decreased.  相似文献   

7.
Sintering of a KSr2Nb5O15 powder compact at 1350°C resulted in a duplex structure. Prefiring of the compact between 1200° and 1300°C inhibited the abnormal grain growth responsible for the duplex structure. The Curie temperature and dielectric constant were dependent on the microstructure.  相似文献   

8.
A particulate coating process incorporating small amounts of several additives such as titanium, zinc, barium, strontium and iron was used to modify the composition and resultant dielectric and electromechanical properties of a commercially available 0.96(0.91Pb(Mg1/3Nb2/3)O3·0.09PbTiO3)·0.04BaTiO3. This method led to intimate mixing of the additives at the nanoscale without an additional ball-mixing process. Low- and high-field characteristics including dielectric properties, induced strain and polarization, and associated hystereses were evaluated for the samples sintered at 1200°C for 4 h. All properties were found to depend on the chemical additives and temperature. Specifically, the addition of small quantities of titanium and barium tended to increase strain and Q eff while maintaining a low dielectric constant which is a promising result for room temperature transducer applications. The addition of titanium with zinc or iron raised dielectric constant, strain, and polarization with significant increases in the temperature of maximum permittivity. On the other hand, the electromechanical properties of the samples containing barium or zinc with titanium did not exhibit a transition to piezoelectric behavior at the temperature expected from the dielectric measurements.  相似文献   

9.
采用复合溶胶凝胶法制粉技术结合传统陶瓷制备工艺,制备了(1-x)BaTiO_3-xKNbO_3陶瓷,对其晶相特征、介电及压电铁电性能进行了研究。在1250℃下烧结的陶瓷形成了单一相的钙钛矿结构固熔体。介电常数随着KNbO_3含量的增加先减小后增加,KNbO_3的加入降低了陶瓷的介电损耗。样品的居里温度也在120℃之间波动。KNbO_3的加入使样品的压电常数d_33值逐渐减小。样品BT的d_33值最大,为140pC/N。样品的剩余极化强度(Pr)随着KNbO_3含量的增加而减小,由7μC/cm~2降为3μC/cm~2;矫顽场强(EC)随KNbO_3含量的增加呈现出变小的趋势,样品BT-KN10的矫顽场强(E_C)为4kV/cm。  相似文献   

10.
(Pb1−xySrxBay)(Zr0.976−zTizNb0.024)O3 solid solutions have been investigated to understand the relationship between structural changes caused by isovalent strontium and barium substitution on the A-site and dielectric and piezoelectric properties. As strontium and barium were substituted for lead, the zirconium:titanium (Zr:Ti) ratio was modified so that all compositions had an optimized piezoelectric coefficient (d33). The value of d33 was at a maximum in the tetragonal phase near, but not at, the morphotropic-phase boundary (MPB). The real MPB was taken as the Zr:Ti ratio at which X-ray diffraction patterns appeared either pseudocubic or a mixture of rhombohedral and tetragonal. As strontium content increased, optimized d33 also increased from 410 pC/N (x= 0) to 640 pC/N (x= 0.12), commensurate with a decrease in the paraelectric-to-ferroelectric phase transition temperature (TC) from 350°C (x= 0) to 175°C (x= 0.12). However, for ceramics where x > 0.12, optimized d33 decreased even though the phase-transition temperature was ∼150°C. Low strontium concentration ceramics (x= 0–0.08) contained 80 nm ferrroelectric domains typical of PZT, but high strontium concentration ceramics (x= 0.12–0.16) contained fine-scale domains (20 nm) in some regions of the microstructure. In addition, [110] pseudocubic electron diffraction patterns revealed superlattice reflections at 1/2{hkl} positions associated with rotations of the octahedra in antiphase. Co-doping ceramics with strontium (x= 0.06) and barium (y= 0.06) resulted in the disappearance of the 1/2{hkl} reflections. Optimized d33 (∼520 pC/N, TC∼ 205°C) for this composition was similar to that of ceramics where x= 0.08, y= 0, which had a TC of ∼250°C.  相似文献   

11.
In the conventional poling method, piezoelectric ceramics and composites are poled by applying a large dc voltage. Poling of composites having a polymer matrix with 0–3 connectivity is especially difficult because the electric field within the high-dielectricconstant grains is far smaller than in the low-dielectric-constant polymer matrix. Therefore, very large electric fields are required to pole these types of composites. However, large electric fields often cause dielectric breakdown of the samples. In this study for improved poling, the corona discharge technique was used to pole piezoelectric ceramics, fired PZT composites, and 0.5PbTiO3· 0.5BiFeO3 0–3 polymer composites. An experimental setup for corona poling is described. The dielectric and piezoelectric properties of materials poled by the corona discharge technique were comparable to those obtained with the conventional poling method.  相似文献   

12.
The synthesis, processing, and electrical properties of SrZrO3 and SrTiO3 materials have been examined. Phase-pure powders of SrZrO3 and SrTiO3 materials were synthesized using the Pechini method. Powder processing routes that used water and 2-propanol as carrier fluids were developed to achieve high green densities, which resulted in sintered densities of >99% of the theoretical density. The relative permittivity and average breakdown strength for carefully processed SrZrO3 were 60 and 40 V/μm; the corresponding values for SrTiO3 were 400 and 35 V/μm. The higher breakdown strengths suggest that these materials can be used in high-voltage capacitor applications.  相似文献   

13.
压电陶瓷PZN-PZT对压电复合材料性能的影响   总被引:1,自引:0,他引:1  
戴雷  胡珊  周莉  晏海霞 《佛山陶瓷》2007,17(6):7-10
本研究采用固相烧结法合成了PZN-PZT压电陶瓷粉体,并用XRD分析了其晶相组成。将PZN-PZT陶瓷粉体与PVDF复合,制备出PZN-PZT/PVDF0-3型压电复合材料,研究了陶瓷质量分数对复合材料铁电性、介电性及压电性的影响。结果表明,复合材料的铁电性、介电性和压电性能随陶瓷含量的增加而增强,当陶瓷含量为90%时,复合材料的剩余极化强度Pr达到5.27μC·cm-2,矫顽场EC为76kV·cm-1,介电常数εr为188,介电损耗tanδ为0.065,压电常数d33则达到33.4pC/N。  相似文献   

14.
The admittance-curve-fitting method is proposed to determine material coefficients of semiconductive piezoelectric ceramics. In this method, the frequency dependence of admittance of a plate resonator is calculated around the resonance frequency, and the piezoelectric, elastic, and dielectric coefficients in the theoretical formula are refined to fit the observed data. The result of a simulation using four types of hypothetical ceramics with different conductivities and electromechanical coupling factors indicates that various constants determined by this method are more accurate than those by the conventional method. The fitting method is applied practically to the PZT ceramics and Bi,K-doped PZT ceramics which show semiconductivity.  相似文献   

15.
Porous ceramics of lead zirconate titanate (PZT) were prepared by sintering powder compacts consisting of PZT and stearic acid powders in an air atmosphere; stearic acid was added as a pore-forming agent (PFA). The dielectric, elastic and piezoelectric properties of uniformly porous PZT ceramics were investigated as a function of the porosity volume fraction. Furthermore, a beam-shaped PZT actuator sample with a graded porosity content across its thickness was fabricated by sintering PFA-graded powder compacts. The electric-field-induced bending displacement characteristics of the actuator samples were measured by using strain gauges and were found to be in good agreement with the theoretical predication based on a classical lamination theory.  相似文献   

16.
Highly ordered Ba(Mg1/3Nb2/3)O3 ceramics from hydrothermal powders were investigated for the first time using infrared spectroscopy. The experimental data were analyzed in view of the 16 predicted modes of the trigonal structure and adjusted by a four–parameter semiquantum model. The obtained phonon parameters allowed us to calculate the real part of the dielectric permittivity and losses in all infrared regions, and also to estimate the quality factor ( Q ) for this material in the microwave region. The values obtained for the dielectric permittivity (ɛ'= 19) and Q (12 800 at 10 GHz) showed that hydrothermal Ba(Mg1/3Nb2/3)O3 ceramics are good materials for passive components in microwave circuits.  相似文献   

17.
The effect of CuO additions on the firing temperature of ZnNb2O6 ceramics was investigated using dilatometry, transmission electron microscopy, and X-ray diffractometry. A 5 wt% CuO addition to ZnNb2O6 ceramics significantly lowered the firing temperature from 1150° to ∼900°C. The presence of a CuO-rich intergranular phase in the specimen was observed and was evidence of the formation of a liquid phase during sintering. The composition of the liquid phase was (ZnCu2)Nb2O8. In particular, the low-fired ZnNb2O6 ceramics had good microwave dielectric characteristics— Q × f = 59 500, ɛr= 22.1, τf=–66 ppm/oC. These properties were correlated with the formation of a second phase, (ZnCu2)Nb2O8.  相似文献   

18.
Regions consisting of grains of pronounced cubic develpment exist in pure KNbO3 ceramics which exhibit a temperature dependence of dielectric constant very similar to that of KNbO3 crystals. KNbO3 ceramics doped with GeO2-K2O additives have small grains, semiconducting resistance, and a different curve of dielectric constant versus temperature. As the average grain size decreases, the shape of the curve differs increasingly from that of KNbO3 crystals.  相似文献   

19.
本文采用新型溶胶-凝胶制粉技术和传统陶瓷生产工艺制备了0.93Bi0.5Na0.5TiO3-0.07Ba1-xMgxTiO3(简称BNBMT100x)体系无铅压电陶瓷,并对BNBMT陶瓷的晶相特征及其介电和压电性能进行了讨论。XRD分析表明,陶瓷样品均形成了单一的钙钛矿结构固溶体;Mg的加入对陶瓷的介电、压电性能有显著影响;陶瓷的铁电-顺电相变峰显著降低、展宽;介电损耗在室温至200℃范围内较平缓。当x=0.04时,机电耦合系数kp和kt最大,分别为16%和19%,压电常数d33值为111pC/N。  相似文献   

20.
The printing of lead zirconate titanate (PZT, Pb(Zr,Ti)O3) piezoelectric thick films on silicon substrates is being studied for potential use as microactuators, microsensors, and microtransducers. A fundamental challenge in the fabrication of useful PZT thick-film devices on silicon is to sinter the PZT to high density at sufficiently low temperature to avoid mechanical or chemical degradation of the silicon substrate. The goal of the present study is to develop and implement suitable electrodes and PZT sintering aids that yield attractive piezoelectric properties for devices while minimizing reactions between the silicon, the bottom electrode, and the PZT thick film. A B2O3-Bi2O3-CdO sintering aid has been found to be superior to borosilicate glass, and the use of a gold/platinum bilayer bottom electrode has resulted in better thermal stability of the electrode/film structure. Films sintered at 900°C for 1 h have relative permittivity of 970 (at 1 kHz), remnant polarization of 20 μC/cm2, coercive field of 30 kV/cm, and weak-field piezoelectric coefficient d 33 of 110 pm/V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号