首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
PURPOSE: To characterize the fate of Lewis rat corneas transplanted to Hartley guinea pigs. METHODS: Full-thickness Lewis rat corneal buttons were grafted orthotopically to Hartley guinea pigs (xenografts), ACI rats (allografts), or Lewis rats (isografts). Two panels of recipients were presensitized with xenogeneic skin grafts or allogeneic skin grafts. Serum samples were collected pre- and post-transplant and analyzed by flow cytometry and indirect immunofluorescence. RESULTS: Unlike vascularized xenografts that reject within 30 min, corneal xenografts had a mean survival time of 8 days. Presensitization with guinea pig skin grafts increased recipient IgM and IgG xenoantibody levels, as measured by flow cytometry on guinea pig hematopoietic cells, and significantly accelerated corneal xenograft rejection with a mean survival time of 5 days. Presensitization with allogeneic ACI skin grafts had no effect on xenoantibody levels or xenogeneic corneal graft survival. Guinea pig corneas stained by indirect immunofluorescence with normal rat serum exhibited low (1+) but significant binding of IgG and IgM, primarily on epithelium and stroma. Serum from Lewis rats that rejected a corneal xenograft had elevated IgG and IgM xenoantibodies that reacted strongly (4+) with guinea pig cornea and heart. CONCLUSIONS: In the discordant guinea pig-to-rat species combination, donor corneas express xenoantigens; rejection of corneal xenografts stimulates IgM and IgG xenoantibody production; sensitization to xenoantigens can accelerate corneal xenograft rejection; and discordant corneal xenografts, unlike vascularized organs, are not hyperacutely rejected.  相似文献   

4.
In vitro studies have revealed several pathways by which T cells can respond to alloantigens, including CD4+ direct responses to allogeneic class II antigens, CD8+ direct responses to allogeneic class I antigens, and CD4+ "indirect" responses to peptides of alloantigens presented in association with responder class II molecules. In vivo studies of skin graft rejection, however, have so far provided clear evidence for the contribution of only the two direct pathways and not for indirect recognition. We have used major histocompatibility complex class II-deficient mice as donors to test the role of indirect recognition in rejection of skin grafts. Class II-deficient skin was always rejected without delay by normal recipients. Removal of recipient CD8+ cells (to leave the animals dependent on CD4+ function) or depletion of recipient CD4+ cells revealed that CD4+ cells were usually involved and sometimes absolutely required in this rapid rejection. Since the donor grafts lacked class II antigens, the CD4+ cells must have recognized donor antigens presented in association with recipient class II molecules. These results therefore indicate that indirect recognition can initiate rapid skin graft rejection.  相似文献   

5.
Allograft rejection is associated with infiltration of inflammatory cells and deposition of extracellular matrix proteins. The extent to which diversity in the extracellular matrix regulates inflammatory cell function in transplants remains unclear. One group of extracellular matrix proteins, termed fibronectins (FNs), exhibits inherent diversity as a consequence of alternative splicing in three segments: EIIIA, EIIIB, or V. Although the EIIIA segment has documented functions in mesenchymal cell differentiation, neither this segment nor the EIIIB segment have been tested for effects specific to leukocyte functions. By contrast, the V region can include the CS-1 segment to which leukocytes may adhere through alpha 4 beta 1 integrins. In this study, we demonstrate that EIIIA+, EIIIB+, and V+ FN variants are synthesized, primarily by macrophages in distinct temporal and spatial patterns in two rat cardiac transplant models: either with antigenic challenge, allografts, or without challenge, isografts. The ratio of EIIIA inclusion into FN increases by day 1 in allografts and isografts and remains high until allografts are rejected (approximately 7 days) but falls to normal levels in tolerated isografts (day 6). EIIIB+ FN ratios in allografts peak later than do EIIIA+ FNs (day 4). EIIIB+ FN ratios remain relatively low in isografts. Interestingly, EIIIA+ and EIIIB+ FNs are deposited prominently in the myocardium of rejecting allografts in close association with infiltrating leukocytes, and FN expression and deposition are prominent at sites of infarction. By contrast, these FNs are largely restricted to the epicardium and to a lesser degree in the immediately adjacent myocardium in isografts. CS-1+ FNs increase in allografts and isografts at 3 hours after transplantation but are particularly prominent in allografts 1 to 3 days before rejection. Our data suggest that FN splicing variants have a differential role in the effector functions of leukocytes in allografts and isografts and provide a foundation for testing their function on leukocytes and a rationale for FN-based therapeutics to modulate allograft rejection in transplant recipients.  相似文献   

6.
BACKGROUND: In a previous study, it was shown that a spontaneously tolerated DA (RT1a) liver allograft in a PVG (RT1c) recipient was able to induce tolerance of a DA small bowel graft performed 17 days later in spite of infiltration of the intestinal grafts by mononuclear cells. AIMS: To compare the phenotype of graft infiltrating cells in rejecting and tolerated small bowel grafts in order to elucidate the mechanism(s) which block the graft infiltrating cells from mediating rejection. METHODS: Multiparameter immunofluorescence was used to compare the phenotype and state of activation of donor and recipient cells isolated from intestinal grafts rejected or tolerated after liver transplantation. RESULTS: Three differences were found. Firstly, there was a more rapid replacement of lamina propria (LP) cells by recipient lymphocytes in tolerated than in rejected grafts. Secondly, the proportion of LP recipient CD8alphabeta+ lymphocytes bearing the high affinity receptor for interleukin 2 was significantly less in tolerated grafts (1.1%, range 0-2%) than in rejected grafts (21.3%, range 9-26%). Finally, tolerated grafts contained significantly less NK lymphocytes (NKR-P1+) and macrophages than rejected intestinal allografts. CONCLUSIONS: These observations make it possible to delineate clear cut differences in the phenotype of cells infiltrating rejecting versus tolerated grafts. Furthermore, the data suggest that liver transplantation induces tolerance of intestinal grafts by hampering the activation of recipient TcRalphabeta+ CD8alphabeta+ T cells and subsequently the recruitment of non-specific effector cells.  相似文献   

7.
Cytolytic T cells were generated in vitro by culturing purified Balb/c CD4+ T cells with irradiated C57Bl/6 (B6) splenocytes plus anti-IL-4 mAb. Matched, noncytotoxic T cells were similarly generated by culturing purified Balb/c CD4+ T cells with irradiated B6 splenocytes plus recombinant murine IL-4. The latter T cells displayed to cytolytic activity, even in lectin-mediated lysis assays, but produced characteristic cytokines upon contact with specific alloantigens. Transfusion of cytolytic T cell populations into Balb/c SCID mice bearing B6 cardiac allografts resulted in acute allograft rejection within 5 to 10 days. Transfusion of noncytolytic T cell populations into Balb/c SCID mice bearing B6 cardiac allografts also resulted in acute allograft rejection within 7 to 10 days. Limiting dilution analysis (LDA) of infiltrating cells recovered from rejected allografts after collagenase digestion demonstrated that the CD4+ T cells retained their cytolytic or noncytolytic functional phenotypes in vivo throughout the rejection process. These data demonstrate that isolated CD4+ T cell populations can promote rapid acute cardiac allograft rejection, and that cytolytic activity is not necessary for this acute rejection response.  相似文献   

8.
There is increasing evidence for a role for nitric oxide (NO) in the alloimmune response and induction of NO synthesis occurs during allograft rejection. The aim of this study was to investigate the source of NO synthesis in rejecting allografts. Localization of inducible nitric oxide synthase (iNOS) was studied by immunohistochemistry, in a rat model of acute renal allograft rejection, in unmodified Lewis recipients in which rejection is complete 7 days after transplantation of F1 hybrid Lewis-Brown Norway kidneys. High levels of iNOS expression were found in infiltrating mononuclear cells in glomeruli and interstitium of rejecting kidneys; there was no expression in parenchymal renal cells, or in control isografts of either rat strain. Expression of iNOS in the cortex was present from 4 to 6 days posttransplantation, and had declined by the 7th day, where expression was principally in the medulla. The pattern of iNOS staining was similar to ED1 staining, a marker for rat macrophages. These findings suggest that infiltrating macrophages in the graft reaction are a prominent source of NO; this iNOS expression supports a role for NO in the modulation of local allogeneic responses, and possibly as a mediator of cytotoxic graft damage.  相似文献   

9.
Most studies investigating early fetal CNS graft-host interactions and host immune responses have been performed using intracerebral transplantation paradigms. The purpose of this study was to establish the early developmental dynamics of fetal graft integration with the injured host spinal cord and to determine whether fetal allografts in this environment are subject to rejection. ACI rat fetal spinal cord (FSC) tissue was grafted into acute lesion cavities of adult WF rat spinal cords. Graft development and/or rejection was followed from 1 to 45 days posttransplantation with morphometric, histological, and immunocytochemical methods. We determined that all FSC grafts in acute resection lesions of the adult rat spinal cord undergo an early substantial cellular attrition, but following favorable attachment to healthy host tissue margins, they rebound and grow to fill the lesion cavity by approximately 45 days. We also determined that FSC allografts into nonimmunosuppressed adult recipients are consistently rejected, but only after an early period of growth and maturation. The onset of rejection is characterized by extensive cellular infiltration coincidental with graft and host MHC antigen expression. The implications of delayed graft development and graft-host integration are discussed relative to interconnectivity and long-term potential for graft-derived benefits. The observed rejection response was characteristic of first-order allograft rejection and underscores a lack of immunological privilege in the microenvironment of the injured spinal cord.  相似文献   

10.
11.
Treatment of C57BL/6 mice with one transfusion of BALB/c spleen cells and anti-CD154 (anti-CD40-ligand) antibody permits BALB/c islet grafts to survive indefinitely and BALB/c skin grafts to survive for approximately 50 d without further intervention. The protocol induces long-term allograft survival, but the mechanism is unknown. We now report: (a) addition of thymectomy to the protocol permitted skin allografts to survive for > 100 d, suggesting that graft rejection in euthymic mice results from thymic export of alloreactive T cells. (b) Clonal deletion is not the mechanism of underlying long-term graft survival, as recipient thymectomized mice were immunocompetent and harbor alloreactive T cells. (c) Induction of skin allograft acceptance initially depended on the presence of IFN-gamma, CTLA4, and CD4(+) T cells. Addition of anti-CTLA4 or anti-IFN-gamma mAb to the protocol was associated with prompt graft rejection, whereas anti-IL-4 mAb had no effect. The role of IFN-gamma was confirmed using knockout mice. (d) Graft survival was associated with the absence of IFN-gamma in the graft. (e) Long-term graft maintenance required the continued presence of CD4(+) T cells. The results suggest that, with modification, our short-term protocol may yield a procedure for the induction of long-term graft survival without prolonged immunosuppression.  相似文献   

12.
BACKGROUND: Failure of costimulatory molecule-deficient donor dendritic cells (DCs) to induce indefinite allograft acceptance may be a result of the 'late" up-regulation of these molecules on the DCs after interaction with host T cells. Ligation of CD40 on antigen-presenting cells by its cognate ligand CD40L is thought to induce expression of CD80 (B7-1) and CD86 (B7-2). We examined the influence of anti-CD40L monoclonal antibody (mAb) on the capacity of donor-derived DC progenitors to induce long-term allograft survival. METHODS: High purity DC progenitors were grown from B10 (H2b) mouse bone marrow in granulocyte-macrophage colony-stimulating factor and transforming growth factor beta1 (TGFbeta1). Mature DC were propagated in granulocyte-macrophage colony-stimulating factor and interleukin-4. Their phenotype was characterized by flow cytometric analysis and their function by mixed leukocyte reactivity. Anti-donor cytotoxic T lymphocyte activity in grafts and spleens of vascularized heart allograft recipients was also assessed. RESULTS: The TGFbeta3-cultured cells were (1) DEC 205-positive, MHC class II-positive, CD80dim, CD86dim, and CD40dim, (2) poor stimulators of naive allogeneic T-cell proliferation, and (3) able to prolong significantly B10 cardiac allograft survival in C3H (H2k) recipients when given (2 x 10[6] i.v.) 7 days before organ transplantation (median survival time [MST] 26 days vs. 12 days in controls, and 5 days in interleukin-4 DC-treated animals). Their allostimulatory activity was further diminished by addition of anti-CD40L mAb at the start of the mixed leukocyte cultures. Anti-CD40L mAb alone (250 microg/mouse, i.p.; day -7) did not prolong cardiac graft survival (MST 12 days). In contrast, TGFbeta-cultured DCs + anti-CD40L mAb extended graft survival to a MST of 77 days, and inhibited substantially the anti-donor cytotoxic T lymphocyte activity of graft-infiltrating cells and host spleen cells assessed 8 days after transplant. CONCLUSIONS: The CD40-CD40L pathway appears important in regulation of allogeneic DC-T-cell functional interaction in vivo; its blockade increases markedly the potential of costimulatory molecule-deficient DCs of donor origin to induce long-lasting allograft survival.  相似文献   

13.
Alloreactive T lymphocytes can respond to foreign MHC complexed with foreign peptides through the direct pathway of allorecognition and can additionally recognize allopeptides expressed in the context of recipient (self) MHC through the indirect pathway. To better elucidate how indirect pathway-responsive CD4(+) T cells mediate allograft rejection, we isolated and characterized a TH1 T cell line from BALB/c recipients of B10.A skin that responds to a defined immunodominant, self-restricted allopeptide, I-Abetak58-71. When transferred into BALB/c severe combined immunodeficiency recipients of B10.A skin allografts, this cell line specifically induced a form of skin graft rejection characterized by the presence of TH1 cytokines, macrophage infiltration, and extensive fibrosis. Recall immune responses and immunofluorescence of the rejecting skin revealed only the presence of the peptide-specific T cells within the recipient animals, with no evidence of a direct pathway alloresponse. These studies demonstrate that T cells reactive to a single self-restricted allopeptide can mediate a form of allogeneic skin graft rejection that exhibits characteristics of a chronic, fibrosing process.  相似文献   

14.
Recent studies revealed that CD4+ cells initiate allograft rejection through direct recognition of allogeneic MHC class II Ags and indirect recognition of MHC peptides processed by self APCs. Both pathways were shown to help CD8+ cells that eventually lysed allogeneic MHC class I-presenting targets. There was little evidence, however, that CD4+ cells are sufficient for graft rejection. We studied skin graft rejection by CD8-deficient (CD8 -/-) mice. We showed that BALB/cJ(H-2d) CD8 -/- mice could reject allogeneic skin from C57BL/6J(H-2b) mice deficient in MHC class I or in MHC class II Ags. To understand the role of CD4+ cells in this process, we isolated them from CD8 -/- mice and transferred them to BALB/cJ nude mice that had been grafted with allogeneic skin (H-2b) from animals deficient in MHC class I or MHC class II. Nude mice injected with CD4+ cells rejected MHC class II and, albeit more slowly, MHC class I disparate skins. We showed in vitro evidence that CD4+ cells were not cytotoxic toward MHC class I or MHC class II disparate targets and that they recognized MHC class I allogeneic targets through indirect recognition. CD4+ cells produced Th1 cytokines, but not IL-4, following stimulation with allogeneic cells. Furthermore, intragraft TNF-alpha was elevated in skin grafted onto nude mice reconstituted with CD4+ cells compared with nonreconstituted mice. This suggests that MHC class II- or MHC class I-guided CD4+ cells alone are sufficient to induce rejection by the generation of cytokine-induced lesions.  相似文献   

15.
To correlate specific local immune responses with protection from corneal scarring, we examined immune cell infiltrates in the cornea after ocular challenge of vaccinated mice with herpes simplex virus type 1 (HSV-1). This is the first report to examine corneal infiltrates following ocular challenge of a vaccinated mouse rather than following infection of a naive mouse. Mice were vaccinated systemically with vaccines that following ocular challenge with HSV-1 resulted in (i) complete protection against corneal disease (KOS, an avirulent strain of HSV-1); (ii) partial protection, resulting in moderate corneal disease (baculovirus-expressed HSV-1 glycoprotein E [gE]); and (iii) no protection, resulting in severe corneal disease (mock vaccine). Infiltration into the cornea of CD4+ T cells, CD8+ T cells, macrophages, and cells containing various lymphokines was monitored on days 0, 1, 3, 7, and 10 postchallenge by immunocytochemistry of corneal sections. Prior to ocular challenge, no eye disease or corneal infiltrates were detected in any mice. KOS-vaccinated mice developed high HSV-1 neutralizing antibody titers (> 1:640) in serum. After ocular challenge, they were completely protected against death, developed no corneal disease, and had no detectable virus in their tear films at any time examined. In response to the ocular challenge, these mice developed high local levels of infiltrating CD4+ T cells and cells containing interleukin-2 (IL-2), IL-4, IL-6, or tumor necrosis factor alpha (TNF-alpha). In contrast, only low levels of infiltrating CD8+ T cells were found, and gamma interferon (IFN-gamma)-containing cells were not present until day 10. gE-vaccinated mice developed neutralizing antibody titers in serum almost as high as those of the KOS-vaccinated mice (> 1:320). After ocular challenge, they were also completely protected against death. However, the gE-vaccinated mice developed low levels of corneal disease and virus was detected in one-third of their eyes. Compared with KOS-vaccinated mice, the gE-vaccinated mice had a similar pattern of IFN-gamma, but a delay in the appearance of CD4+ T cells, CD8+ T cells, and IL-4-, IL-6-, and TNF-alpha-containing cells. In sharp contrast to those of the KOS-vaccinated mice, no cells containing IL-2 were detected in the eyes of gE-vaccinated mice at any time. Mock-vaccinated mice developed no detectable neutralizing antibody titer and were not protected from lethal HSV-1 challenge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The role of T lymphocytes in susceptibility to Pseudomonas aeruginosa corneal infection was studied in inbred C57Bl/6 (B6) beta2-microglobulin+/+ (beta2m+/+) and beta2m-/- knockout (KO) mice on a B6 genetic background. The corneas of both B6 and KO mice perforated by 7 days postinfection (p.i.). Histopathology revealed a similar inflammatory response characterized by an infiltration of polymorphonuclear neutrophilic leukocytes by 24 h p.i. in both groups of mice. CD4+ and CD8+ (latter absent in KO) T cells were present in cornea by 3 days p.i., and by 5 days, IL-2R-positive cells were positively immunostained. Corneas of B6 beta2m+/+ mice depleted of CD4+ T cells and infected with P. aeruginosa did not perforate at 7 days p.i. vs mice depleted of CD8+ T cells or treated with an irrelevant mAb. Neutralization of IFN-gamma before infecting B6 mice prevented corneal perforation and was associated with a lower delayed-type hypersensitivity than in B6 mice similarly treated with an irrelevant mAb. These data provide evidence that a CD4+ T cell (Th1)-dominated response following P. aeruginosa corneal infection is associated with genetic susceptibility and corneal perforation in inbred B6 mice.  相似文献   

17.
This study evaluated the contribution of acute parenchymal rejection and interferon (IFN)-gamma to the development of graft arterial disease (GAD) in totally allogeneic murine cardiac transplants. BALB/c (H-2d) hearts were transplanted into wild-type C57BL/6 (B6, H-2b) or B6 IFN-gamma-deficient (GKO) recipient mice. Assessing the role of acute parenchymal rejection in the GAD process involved two different immunosuppression protocols using anti-CD4 and -CD8 monoclonal antibodies (MAbs): virtually complete long-term immunosuppression (denoted as complete immunosuppression) was achieved by administering both MAbs 6, 3, and 1 day before transplantation and weekly thereafter; in contradistinction, a single, early, transient episode of rejection (transient rejection) was attained by administering MAbs beginning 4 days after transplant and then at weekly intervals. The extent and duration of T cell depletion under these two regimens were evaluated using flow cytometric analysis of peripheral blood lymphocytes. After a single injection of MAbs, peripheral blood CD4+ and CD8+ T cell depletion was approximately 98% at 1 week and approximately 88% at 2 weeks. After three injections (analogous to days 6, 3, and 1 before transplant), peripheral blood CD4+ and CD8+ T cell depletion was >98% at 2 weeks and approximately 87% at 4 weeks. Functioning cardiac allografts were removed at 8 and 12 weeks after transplant and analyzed by hematoxylin and eosin, elastic tissue, and immunohistochemical stains, and the severity of parenchymal rejection versus GAD was scored. With complete immunosuppression (antibody before and after transplant), BALB/c allografts showed little parenchymal rejection or GAD, suggesting that persistent depletion of T cells blocked subsequent development of GAD. However, even a single transient acute rejection episode allowed the subsequent development of GAD accompanied by augmented major histocompatibility complex (MHC) class II, VCAM-1, and ICAM-1 expression at 12 weeks; these allografts showed no residual CD4+ or CD8+ T cells. In comparison, allografts undergoing transient rejection in GKO recipients did not develop GAD, despite persistent macrophage and natural killer cell (NK) infiltrates comparable to those seen in wild-type recipients. Moreover, the arterioles of hearts transplanted into GKO recipients showed no or minimal increases in MHC class II, ICAM-1, and VCAM-1 relative to baseline expression. In conclusion, a single episode of allogeneic injury mediated by T cells suffices to evoke subsequent graft arteriosclerosis, even in the absence of additional T-cell-mediated injury, and the process appears to depend on IFN-gamma.  相似文献   

18.
Bone marrow transplantation (BMT) from a partially mismatched related donor (PMRD) provides a treatment option for patients lacking a matched sibling donor. T lymphocyte depletion of the graft reduces the risk of severe graft-versus-host disease, but may increase the risk of graft failure. We evaluated the pattern of acute graft rejection in eight patients receiving PMRD BMT with respect to the conditioning therapy, diagnosis, age and sex of donor and recipient, degree of HLA mismatch, and peripheral blood immunophenotype at the time of graft failure. All grafts were partially depleted of T lymphocytes. Marrow grafts infused into patients who experienced acute rejection did not differ significantly in nucleated cell dose, degree of T lymphocyte depletion, T cell dose, or CFU-GM/kg infused, from those received by 31 patients who showed durable engraftment. In three of four patients who rejected their grafts, and had sufficient peripheral blood cells for immunophenotyping, a CD3+CD8+ T lymphocyte phenotype was predominant at the time of acute rejection. In one patient rejection was associated with a predominant population of CD3+CD4+ T lymphocytes. Rejection was significantly associated with chronic myelogeneous leukemia and in patients mismatched by more than two antigens.  相似文献   

19.
We have recently demonstrated that cardiac allograft rejection in the PVG.R8-to-PVG.1U rat strain combination involves the recognition of a isolated class I (RT1.Aa) molecules as peptides in the context of the recipient MHC molecules. Three synthetic peptides (P1, P2, and P3) corresponding to the alpha-helices of the RT1.Aa molecule served as T-cell epitopes for graft rejection. In this study, we demonstrate that two of these peptides (P2 and P3) are sufficient to induce immune nonresponsiveness (median survival time >237 days) to cardiac allografts when presented to the recipient immune system in the thymus 7 days before transplantation. This effect was time dependent, as intrathymic inoculation 60 days before transplantation did not prolong graft survival (median survival time=12 days). Previous studies have demonstrated a critical role for alloantibody responses in mediating graft rejection in this rat strain combination. We, therefore, studied the role alloantibody responses may play in the observed immune nonresponsiveness. The titers of alloantibody in serum samples harvested from graft recipients at different times after transplantation were measured. We used recipient primary aortic endothelial cells genetically manipulated to express the donor RT1.Aa molecule as targets in an enzyme-linked immunosorbent assay. High titers of anti-RT1.Aa IgM antibody were detected in unmanipulated controls at the time of graft rejection. The IgM antibody switched to high IgG titers in intrathymically inoculated rats with accelerated or delayed rejection. Graft rejection in intrathymically manipulated recipients that had achieved a transient state of immunological nonresponsiveness correlated with higher titers of the IgG2b alloantibody. In marked contrast, the long-term graft survivors expressed undetectable or low levels of the IgG2b antibody and moderate to high levels of the IgG1 and IgG2a subclasses. These data suggest that the IgG2b alloantibody may contribute to the rejection reaction, whereas IgG1 and IgG2a may be involved in active enhancement of graft survival.  相似文献   

20.
Donor CD8 cells play a pivotal role in preventing allogeneic marrow graft rejection, possibly by generating cytotoxic effectors needed to eliminate recipient T cells remaining after the pretransplant conditioning regimen or by producing cytokines needed to support the growth and differentiation of hematopoietic stem cells. In the present study, we assessed the role of donor T-cell cytotoxic effector function as a mechanism for eliminating recipient CD8 cells that cause marrow graft rejection in mice. The ability to prevent rejection was minimally affected by the presence of a defect in Fas ligand binding or by the absence of granzyme B but was severely affected by the absence of perforin. Doubly mutant perforin-deficient, Fas ligand-defective CD8 cells were completely unable to prevent rejection. Our results indicate first that recipient CD8 effectors responsible for causing marrow graft rejection are sensitive to cytotoxicity mediated by both perforin- and Fas-ligand-dependent mechanisms, and second that donor T cells must have at least one functional cytotoxic mechanism to prevent allogeneic marrow graft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号