首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
频繁项集挖掘算法综述   总被引:4,自引:0,他引:4  
该文基于频繁项集挖掘算法的研究现状,采用自底向上遍历搜索、自顶向下遍历搜索和混合遍历搜索的分类方法,对现有的频繁项集挖掘算法进行归纳分类,分析和比较了各类别中具有代表性的挖掘算法,总结每种算法各方面的特性.同时,对一些特殊的频繁项集挖掘算法也作了简单介绍.旨在使读者全面掌握频繁项集挖掘算法目前的研究水平,便于研究者对已有的算法进行改进,提出具有更好性能的新的分类算法,也便于使用者在应用时对算法的选择和使用.  相似文献   

2.
论述了频繁项集数据挖掘算法,并采用自底向上和自顶向下遍历搜索分类方法,对已有的频繁项集挖掘算法进行了分析和比较。  相似文献   

3.
为了进一步降低扫描数据库的次数和减轻内存负担,从而更好地提高挖掘频繁项集的效率,一种基于Apriori的优化算法(M-Apriori)被提出. 该方法通过构建频繁状态矩阵来存放项集的频繁状态,构建事务布尔矩阵来存放事务与项集的关系,此算法只需在初始化阶段扫描一次数据库产生初始的频繁状态矩阵和事务布尔矩阵,并在此基础上直接递推产生所有的频繁项集. 实验证明,与Apriori算法相比,M-Apriori算法具有更好的性能与效率.  相似文献   

4.
对于频繁项集挖掘,采用一种FP-数组技术来减少FP-tree的遍历时间,减少数据集的扫描次数,在此基础上提出了一种基于FP-tree进行频繁项集挖掘的FP-growth+算法,提高了算法的效率。最后的实验证明了该算法的有效性。  相似文献   

5.
关联规则挖掘是近年来数据挖掘领域中一个相当活跃的领域,频繁项集挖掘是关联规则挖掘中最重要的任务。最大频繁项集的规模远远小于频繁项集的规模,通过最大频繁项集可以导出所有的频繁项集,因此进行了很多专门挖掘最大频繁项集的研究。给出了关联规则和相关术语的基本概念,对最大频繁项集挖掘算法作了分析与评价,便于研究者对已有的算法进行改进,提出具有更好性能的新算法。  相似文献   

6.
改进的频繁项集挖掘算法   总被引:1,自引:0,他引:1       下载免费PDF全文
频繁项集挖掘是数据挖掘中的一个重要研究课题。在分析Apriori算法与FP-growth 算法特点的基础上,提出了一种改进的频繁项集挖掘算法,即索引生成频繁项集算法IGFA。IGFA算法基于Apriori算法并通过 “索引二元组”生成候选集,减免了候选集的大量冗余,实验及结果分析表明该算法有效提高了频繁项集的挖掘效率。  相似文献   

7.
发现频繁项集是关联规则挖掘中最基本、最重要的问题.提出了一种基于二进制表示的频繁项集挖掘算法,并利用二进制的性质快速产生候选项集并计算其支持度.算法总体性能在一定程度上得到了提高.  相似文献   

8.
一种动态的频繁项集挖掘算法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种基于无向项集图的动态频繁项集挖掘算法。当事务数据库和最小支持度发生变化时,该算法只需重新遍历一次无向项集图,即可得到新的频繁项集。与传统的频繁项集挖掘算法相比,在执行效率上有显著提高。  相似文献   

9.
分析了New-Apriori和MWFI(Mining Weighted Frequent Itemsets)算法之不足,提出了一种挖掘加权频繁项集的New-MWFI算法。该算法按属性的权值对事务进行分类,并依次求出每个类别内的加权频繁项集。由于每个类别内的频繁项集满足Apriori性质,因而可以利用Apriori算法或其他改进算法进行挖掘,从而克服了原来算法的不合理和效率低下的缺陷。实验表明该算法能更有效地从数据集中挖掘出加权频繁项集。  相似文献   

10.
针对PrePost算法中需要建立复杂的前序和后序编码树(PPC-tree)和节点链表(N-list)的问题,提出一种基于间隔链表(I-list)改进的高效频繁项集挖掘算法。首先,该算法采用了比频繁模模式树(FP-tree)更加压缩的数据存储结构间隔编码的频繁模式树(IFP-tree),无需迭代地建立条件FP-tree;其次,该算法利用更简洁的I-list代替了PrePost中复杂的N-list,从而提高了建树和挖掘速度;最后,对于单分支路径的情况,该算法通过组合的方法,直接求得某些频繁项集,以提高算法的时间性能。实验结果表明:一方面,对于同一数据集在相同支持数下挖掘的结果相同,验证了改进算法的正确性;另一方面,无论在时间还是空间上改进算法的整体性能均比PrePost算法提高约10%;且对于稀疏型数据库或密集型数据库的挖掘都有较好的应用。  相似文献   

11.
最大频繁项目集的增量式更新算法   总被引:4,自引:0,他引:4  
孙沛涛  孙俊清 《计算机工程与设计》2005,26(12):3213-3215,3229
关联规则挖掘已取得了许多有效的算法,但是当事务数据库发生动态变化情况时,频繁项集的挖掘工作仍然是一个复杂的问题。在数据库动态增加的情况下,给出了一种有效的算法——-NEWIUA,它与其它的增量更新算法相比,不同之处在于:NEWIUA对原数据库及新数据库最多只需遍历一次,减少了I/O次数,同时该算法可以保证每次所得的候选项的数目都是最少的。  相似文献   

12.
一种新的高效Apriori算法   总被引:6,自引:2,他引:6  
Apriori算法是关联规则挖掘中的经典算法。本文针对Apriori算法的瓶颈提出一种使用先验算法产生频繁2项目集。并给出了一种简单有效的逐步缩减交易数据库的方法,加快了频繁k项目集的验证速度。新算法减小了存储空间,并显著提高了Apriori算法的效率,并改进了数据挖掘算法的性能。  相似文献   

13.
通过对关联规则挖掘技术及经典算法Apriori和FP-growth的研究和分析,提出了一种改进的频繁项集挖掘算法。该算法利用矩阵存储数据,并结合矩阵运算求项集的支持数,有效减少了事务数据库的扫描次数;利用有序频繁项目邻接矩阵创建频繁模式树,有效减少了频繁模式树的分支和层数。通过实例分析了频繁项集的挖掘过程。  相似文献   

14.
在含负项目的一般化关联规则的挖掘中,由于负项目的引入使得频繁项集的搜索空间变得更加巨大,而同时挖掘出的关联规则数量也随之增大,但其中很多规则对用户来说是不感兴趣的,而且可能包含一些冗余和错误的规则。因此提出了最大支持度的概念,用来约束频繁项集的挖掘,排除没有意义的关联规则同时也提高了挖掘的效率。在挖掘中对正负项目分别采用不同的最小支持度,使得挖掘更加灵活。并通过实验证明改进是行之有效的。  相似文献   

15.
一种基于矩阵的频繁项集更新算法*   总被引:2,自引:0,他引:2  
针对相关算法在处理频繁项集更新时所存在的问题,提出了一种基于矩阵的频繁项集更新算法。该算法首先以时间为基准将更新后的数据库分为原数据库和新增数据库,分别将它们转换为0-1矩阵,通过矩阵裁剪、位运算产生新增频繁项集,并利用已有频繁项集更新原有频繁项集。实验仿真结果不但证明了该算法的可行性和高效性,而且还证明了它适合大型、稠密性数据库的频繁项集更新。  相似文献   

16.
关联规则挖掘的应用日益广泛,但已经提出的大多关联规则挖掘算法都是把数据仓库中各个项目按平等一致的方式加以处理的.然而,在现实世界中,不同的项目往往有着不同的重要性.现有的有关加权关联规则的研究中,大多采用的加权方法不太好,或挖掘算法效率不够高.为此,提出了一种新的挖掘加权关联规则的算法,该算法采用矩阵和位串技术,只需要对数据库扫描一遍,可快速挖掘出所有的加权频繁项集,并且存放辅助信息所需要的空间也较少.研究表明该算法比已有的算法更高效.  相似文献   

17.
在分析研究具有代表性的关联知识挖掘算法的基础上,提出了挖掘频繁模式的一个新的数据库存储结构AFP-树,并在此结构上设计了一个频繁模式挖掘算法。理论研究已经阐明了AFP-树的有效性和相关算法的高效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号