首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wireless Local Area Network (WLAN) with high data bit rates can be used with cellular network to achieve higher level of Quality of Service (QoS) by sharing their total resources efficiently. The integration between cellular and WLAN networks should be ensured considering different channel allocation strategies of both networks and efficient resource management techniques should be developed. In this paper, we propose a new call admission scheme to use the coupled resource effectively. The proposed scheme, by taking the different resource sharing strategies for two access networks, limits the new, horizontal and vertical handoff voice and data call arrivals with respect to their call level QoS requirements. Numerical results show that the proposed integrated cellular/WLAN network model uses the resources more effectively and achieves all upper bound QoS requirements for voice and data users as compared with the non integrated network model.  相似文献   

2.
Resource management for QoS support in cellular/WLAN interworking   总被引:3,自引:0,他引:3  
To provide mobile users with seamless Internet access anywhere and anytime/ there is a strong demand for interworking mechanisms between cellular networks and wireless local area networks in the next-generation all-IP wireless networks. In this article we focus on resource management and call admission control for QoS support in cellular/WLAN interworking. In specific, a DiffServ interworking architecture with loose coupling is presented. Resource allocation in the interworking environment is investigated/ taking into account the network characteristics, vertical handoff, user mobility, and service types. An effective call admission control strategy with service differentiation is proposed for QoS provisioning and efficient resource utilization. Numerical results demonstrate the effectiveness of the proposed call admission control scheme.  相似文献   

3.
Device‐to‐device (D2D) communication in the fifth‐generation (5G) wireless communication networks (WCNs) reuses the cellular spectrum to communicate over the direct links and offers significant performance benefits. Since the scarce radio spectrum is the most precious resource for the mobile‐network operators (MNOs), optimizing the resource allocation in WCNs is a major challenge. This paper proposes an adaptive resource‐block (RB) allocation scheme for adequate RB availability to every D2D pair in a trisectored cell of the 5G WCN. The hidden Markov model (HMM) is used to allocate RBs adaptively, promoting high resource efficiency. The stringent quality‐of‐service (QoS) and quality‐of‐experience (QoE) requirements of the evolutionary 5G WCNs must not surpass the transmission power levels. This is also addressed while using HMM for RB allocation. Thus, an energy‐efficient RB allocation is performed, with higher access rate and mean opinion score (MOS). Cell sectoring effectively manages the interference in the 5G networks amid ultrauser density. The potency of the proposed adaptive scheme has been verified through simulations. The proposed scheme is an essential approach to green communication in 5G WCNs.  相似文献   

4.
Resource allocation and call admission control (CAC) are key management functions in future cellular networks, in order to provide multimedia applications to mobiles users with quality of service (QoS) guarantees and efficient resource utilization. In this paper, we propose and analyze a priority based resource sharing scheme for voice/data integrated cellular networks. The unique features of the proposed scheme are that 1) the maximum resource utilization can be achieved, since all the leftover capacity after serving the high priority voice traffic can be utilized by the data traffic; 2) a Markovian model for the proposed scheme is established, which takes account of the complex interaction of voice and data traffic sharing the total resources; 3) optimal CAC parameters for both voice and data calls are determined, from the perspective of minimizing resource requirement and maximizing new call admission rate, respectively; 4) load adaption and bandwidth allocation adjustment policies are proposed for adaptive CAC to cope with traffic load variations in a wireless mobile environment. Numerical results demonstrate that the proposed CAC scheme is able to simultaneously provide satisfactory QoS to both voice and data users and maintain a relatively high resource utilization in a dynamic traffic load environment. The recent measurement-based modeling shows that the Internet data file size follows a lognormal distribution, instead of the exponential distribution used in our analysis. We use computer simulations to demonstrate that the impact of the lognormal distribution can be compensated for by conservatively applying the Markovian analysis results.  相似文献   

5.
D2D通信中联合链路共享与功率分配算法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对D2D (Device-to-Device,D2D)通信过程中的资源分配问题,提出一种联合链路共享和功率分配算法.在保证系统内蜂窝用户服务质量(Quality of Service,QoS)需求的前提下,利用系统的信道状态信息,为D2D用户生成一个由蜂窝用户组成的通信链路的候选集合;在通信链路候选集合内使用凸优化方法得到D2D用户最优功率分配策略;最后利用(Kuhn-Munkres,KM)算法求解最大加权二部图匹配(Maximum Weight Bipartite Matching,MWBM)问题,为D2D用户选择最优的蜂窝用户进行资源共享.仿真结果表明该算法能有效的提升通信网络的吞吐量,可以为D2D用户选择最优的资源分配策略.  相似文献   

6.
A novel bandwidth allocation strategy and a connection admission control technique arc proposed to improve the utilization of network resource and provide the network with better quality of service (QoS) guarantees in multimedia low earth orbit (LEO) satellite networks. Our connection admission control scheme, we call the probability based dynamic channel reservation strategy (PDR), dynamically reserves bandwidth for real-time services based on their handoff probability. And the reserved bandwidth for real-time handoff connection can also be used by new connections under a certain probability determined by the mobility characteristics and bandwidth usage of the system. Simulation results show that our scheme not only lowers the call dropping probability (CDP) for Class I real-time service but also maintains the call blocking probability (CBP) to certain degree. Consequently, the scheme can offer very low CDP for rcal-time connections while keeping resource utilization high.  相似文献   

7.
The require of omnipresent wireless access and high data rate services are expected to increase extensively in the near future. In this context, heterogeneous networks, which are a mixture of different wireless technologies (LTE-advanced, LTE-advanced Pro, C-IoT (Cellular Internet of Thing), 5G WiFi, etc) are invited to enable important capabilities, such as high data rates, low latencies and efficient resource utilization in order to provide dedicated capacity to offices, homes, and urban hotspots. Mixing these technologies in the same system, with their complementary characteristics, to afford a complete coverage to users can cause various challenges such as seamless handover, resource management and call admission control. This article proposes a general radio resource management framework which can be supported by future network architectures. A combined call admission control, resource reservation algorithm and bandwidth adaptation based IEEE 802.21 MIH standard approach for heterogeneous wireless network is detailed in this framework. Our aims are to guarantee quality of service (QoS) requirements of all accepted calls, reduce new call blocking probability and handover call dropping probability, and maintain efficient resource utilization. Performance analysis shows that our proposed approach best guarantees QoS requirements.  相似文献   

8.
A novel radio resource management (RRM) scheme for the support of packet-switched transmission in cellular CDMA systems is proposed by jointly considering the physical, link, and network layer characteristics. The proposed resource management scheme is comprised of a combination of power distribution, rate allocation, service scheduling, and connection admission control. Power distribution allows individual connections to achieve their required signal-to-interference-plus-noise ratio, while rate allocation guarantees the required delay/jitter for real-time traffic and the minimum transmission rate requirement for non-real-time traffic. Efficient rate allocation is achieved by making use of the randomness and burstiness; of the packet generation process. At the link layer, a packet scheduling scheme is developed based on information derived from power distribution and rate allocation to achieve quality of service (QoS) guarantee. Packet scheduling efficiently utilizes the system resources in every time slot and improves the packet throughput for non-real-time traffic. At the network layer, a connection admission control (CAC) scheme based on the lower layer resource allocation information is proposed. The CAC scheme makes use of user mobility information to reduce handoff connection dropping probability (HCDP). Theoretical analysis of the grade of service performance, in terms of new connection blocking probability, HCDP, and resource utilization, is given. Numerical results show that the proposed RRM scheme can achieve both effective QoS guarantee and efficient resource utilization.  相似文献   

9.
该文研究面向电网业务质量保障的5G 高可靠低时延通信(URLLC)的资源调度机制,以高效利用低频段蜂窝通信系统内有限的频谱和功率资源来兼顾电力终端传输速率和调度时延、调度公平性,保障不同电力业务的通信质量(QoS)。首先,基于URLLC的高可靠低时延传输特性,建立电力终端多小区下行传输模型。然后,提出面向系统下行吞吐量最大化的资源分配问题模型并对其进行分步求解,分别提出基于定价机制与非合作博弈的功率分配算法和基于调度时延要求的改进比例公平算法(DPF)动态调度信道资源。仿真结果表明,提出的资源调度方法能在保证一定传输可靠性和公平性的条件下降低电力终端调度时延,满足不同业务等级的QoS需求,与已知算法对比有一定的优越性。  相似文献   

10.
The next‐generation packet‐based wireless cellular network will provide real‐time services for delay‐sensitive applications. To make the next‐generation cellular network successful, it is critical that the network utilizes the resource efficiently while satisfying quality of service (QoS) requirements of real‐time users. In this paper, we consider the problem of power control and dynamic channel allocation for the downlink of a multi‐channel, multi‐user wireless cellular network. We assume that the transmitter (the base‐station) has the perfect knowledge of the channel gain. At each transmission slot, a scheduler allots the transmission power and channel access for all the users based on the instantaneous channel gains and QoS requirements of users. We propose three schemes for power control and dynamic channel allocation, which utilize multi‐user diversity and frequency diversity. Our results show that compared to the benchmark scheme, which does not utilize multi‐user diversity and power control, our proposed schemes substantially reduce the resource usage while explicitly guaranteeing the users' QoS requirements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The main objective in telecommunications network engineering is to have as many happy users as possible. In other words, the network engineer has to resolve the trade-off between capacity and QoS requirements. Accurate modeling of the offered traffic load is the first step in optimizing resource allocation algorithms such that provision of services complies with the QoS constraints while maintaining maximum capacity. As broadband multimedia services became popular, they necessitated new traffic models with self-similar characteristics. We present a survey of the self-similarity phenomenon observed in multimedia traffic and its implications on network performance. Our current research aims to fill the gap between this new traffic model and network engineering. An immediate consequence of this study is the demonstration of the limitations or validity of conventional resource allocation methods in the presence of self-similar traffic  相似文献   

12.
A major task in next-generation wireless cellular networks is provisioning of quality of service (QoS) over the bandwidth limited and error-prone wireless link. In this paper, we propose a cross-layer design scheme to provide QoS for voice and data traffic in wireless cellular networks with differentiated services (DiffServ) backbone. The scheme combines the transport layer protocols and link layer resource allocation to both guarantee the QoS requirements in the transport layer and achieve efficient resource utilization in the link layer. Optimal resource allocation problems for voice and data flows are formulated to guarantee pre-specified QoS with minimal required resources. For integrated voice/data traffic in a cell, a hybrid time-division/code-division medium access control (MAC) scheme is presented to achieve efficient multiplexing. Theoretical analysis and simulation results demonstrate the effectiveness of the proposed cross-layer approach.  相似文献   

13.
In wireless cellular communication systems, call admission control (CAC) is to ensure satisfactory services for mobile users and maximize the utilization of the limited radio spectrum. In this paper, we propose a new CAC scheme for a code division multiple access (CDMA) wireless cellular network supporting heterogeneous self-similar data traffic. In addition to ensuring transmission accuracy at the bit level, the CAC scheme guarantees service requirements at both the call level and the packet level. The grade of service (GoS) at the call level and the quality of service (QoS) at the packet level are evaluated using the handoff call dropping probability and the packet transmission delay, respectively. The effective bandwidth approach for data traffic is applied to guarantee QoS requirements. Handoff probability and cell overload probability are derived via the traffic aggregation method. The two probabilities are used to determine the handoff call dropping probability, and the GoS requirement can be guaranteed on a per call basis. Numerical analysis and computer simulation results demonstrate that the proposed CAC scheme can meet both QoS and GoS requirements and achieve efficient resource utilization.  相似文献   

14.
We propose an integrated resource management approach that can be implemented in next generation wireless networks that support multimedia services (data, voice, video, etc.). Specifically, we combine the use of position-assisted and mobility predictive advanced bandwidth reservation with a call admission control and bandwidth reconfiguration strategy to support flexible QoS management. We also introduce a mobile agent based framework that can be used to carry out the functions of geolocation and of the proposed resource management in wireless networks. A model is also developed to obtain the optimal location information update interval in order to minimize the total cost of the system operation. The comparison of the achievable performance results of our proposed scheme with the corresponding results of a conventional system that supports advanced bandwidth reservation only, as means of supporting the QoS requirements, demonstrate that our integrated scheme can alleviate the problem of overreservation, support seamless operation throughout the wireless network, and increase significantly the system capacity.  相似文献   

15.
One of the major challenges in service grid is to guarantee the promised quality of service (QoS) for all the admitted users or applications, while maximizing the resource utilization through dynamic resource sharing. An efficient resource allocation method should ensure the service QoS and balance the load among service grid nodes which are often highly dynamic, heterogeneous and linked by wide-area network. In this paper, a new dynamic resource allocation method is presented and analyzed based on fuzzy modeling to solve the adaptation between heterogeneous applications with multiple QoS requirements and grid resource. Simulations in service grid with heterogeneous QoS requirements reveal that the proposed dynamic resource allocation method can distribute most suitable resource among the different service quickly and sensitively as the service QoS demand varies under the constraint of achieving maximum utilization of grid resources.  相似文献   

16.
An efficient channel allocation policy that prioritizes handoffs is an indispensable ingredient in future cellular networks in order to support multimedia traffic while ensuring quality of service requirements (QoS). In this paper we study the application of a reinforcement-learning algorithm to develop an alternative channel allocation scheme in mobile cellular networks that supports multiple heterogeneous traffic classes. The proposed scheme prioritizes handoff call requests over new calls and provides differentiated services for different traffic classes with diverse characteristics and quality of service requirements. Furthermore, it is asymptotically optimal, computationally inexpensive, model-free, and can adapt to changing traffic conditions. Simulations are provided to compare the effectiveness of the proposed algorithm with other known resource-sharing policies such as complete sharing and reservation policies  相似文献   

17.
4G蜂窝网的频谱分配效率难以负担日益增长的移动IPTV服务与大视频流数据,为此提出了蜂窝网支持移动IPTV服务的优化方案,在保持传统语音电话质量的前提下,提高了移动IPTV服务的性能.首先,为语音电话分配较高的频率分配优先级以维护语音电话的QoS(Quality of Service);然后,采用软频谱复用技术来增强频谱的效率,并降低相邻蜂窝之间的频谱干扰;最终,设计了动态频谱分配算法,对相邻蜂窝间边缘频带的频谱分配进行协调与优化,进一步地提高了频谱利用率.仿真结果显示,本频谱分配算法在不降低语音电话服务质量的前提下,明显地提高了移动IPTV服务的性能.  相似文献   

18.
Effective support of real‐time multimedia applications in wireless access networks, viz. cellular networks and wireless LANs, requires a dynamic bandwidth adaptation framework where the bandwidth of an ongoing call is continuously monitored and adjusted. Since bandwidth is a scarce resource in wireless networking, it needs to be carefully allocated amidst competing connections with different Quality of Service (QoS) requirements. In this paper, we propose a new framework called QoS‐adaptive multimedia wireless access (QoS‐AMWA) for supporting heterogeneous traffic with different QoS requirements in wireless cellular networks. The QoS‐AMWA framework combines the following components: (i) a threshold‐based bandwidth allocation policy that gives priority to handoff calls over new calls and prioritizes between different classes of handoff calls by assigning a threshold to each class, (ii) an efficient threshold‐type connection admission control algorithm, and (iii) a bandwidth adaptation algorithm that dynamically adjusts the bandwidth of an ongoing multimedia call to minimize the number of calls receiving lower bandwidth than the requested. The framework can be modeled as a multi‐dimensional Markov chain, and therefore, a product‐form solution is provided. The QoS metrics—new call blocking probability (NCBP), handoff call dropping probability (HCDB), and degradation probability (DP)—are derived. The analytical results are supported by simulation and show that this work improves the service quality by minimizing the handoff call dropping probability and maintaining the bandwidth utilization efficiently. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes efficient resource allocation techniques for a policy-based wireless/wireline interworking architecture, where quality of service (QoS) provisioning and resource allocation is driven by the service level agreement (SLA). For end-to-end IP QoS delivery, each wireless access domain can independently choose its internal resource management policies to guarantee the customer access SLA (CASLA), while the border-crossing traffic is served by a core network following policy rules to meet the transit domain SLA (TRSLA). Particularly, we propose an engineered priority resource sharing scheme for a voice/data integrated wireless domain, where the policy rules allow cellular-only access or cellular/WLAN interworked access. By such a resource sharing scheme, the CASLA for each service class is met with efficient resource utilization, and the interdomain TRSLA bandwidth requirement can be easily determined. In the transit domain, the traffic load fluctuation from upstream access domains is tackled by an inter-TRSLA resource sharing technique, where the spare capacity from underloaded TRSLAs can be exploited by the overloaded TRSLAs to improve resource utilization. Advantages of the inter-SLA resource sharing technique are that the core network service provider can freely design the policy rules that define underload and overload status, determine the bandwidth reservation, and distribute the spare resources among bandwidth borrowers, while all the policies are supported by a common set of resource allocation techniques.  相似文献   

20.
In order to maximize the system capacity in third generation wireless system, efficient call admission and load control algorithms are required to handle the different services having diverse traffic patterns and Quality of Service (QoS) requirements. We propose an admission and load control algorithm that considers the network loading information, propagation conditions, and the interference level. The algorithm takes advantage of the new features of third-generation (3G) wireless system such as the reported pilot measurements, auxiliary pilot for smart antennas, and variable spreading gain. Dynamic resource allocation is employed to scale the amount of the assigned radio resources taking the network loading conditions and channel characteristics into consideration. The results show that integrating the voice service and the data service with high transmission rate (>144 Kbps) can be realized using efficient resource management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号