首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient microextraction procedure based on modified ionic liquid cold-induced aggregation dispersive liquid–liquid microextraction (M-IL-CIA-DLLME) was developed for trace determination of chromium in water and food samples by flame atomic absorption spectrometry (FAAS), and it was used for speciation of Cr(III) and Cr(VI) in water samples by using Na2SO3 as the reducing agent. A mixture of water-immiscible 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF6]) ionic liquid (IL) (microextraction solvent) and ethanol (disperser solvent) were directly injected into a heated aqueous solution containing bis(2-methoxy benzaldehyde) ethylene diimine as a Schiff’s base ligand (chelating agent), hexafluorophosphate (NaPF6; as a common ion) and Cr(III). Afterwards, the solution was placed in an ice-water bath and a cloudy solution was formed due to a considerable decrease of IL solubility. After centrifuging, the sedimented phase containing enriched analyte was determined by FAAS. Under the optimum conditions, the calibration graph was linear over the range of 2–50 μg?L?1 with limit of detection of 0.7 μg?L?1. The accuracy of the present methodology was tested by recovery experiments and by analyzing a certified reference material. Relative standard deviation (RSD %) was 2.7 % for Cr(III). The proposed method was successfully applied for trace determination of chromium in water and food samples.  相似文献   

2.
Selectivity of solid-phase extraction (SPE) was combined with the concentration power of dispersive liquid–liquid microextraction (DLLME) to obtain a sensitive, low solvent consumption method for high-performance liquid chromatography determination of diazinon and chlorpyrifos in rice. In this method, rice samples were extracted by ultrasound-assisted extraction followed by SPE. Then, the SPE eluent was used as a disperser solvent in the next dispersive liquid-liquid microextraction step for further purification and enrichment of diazinon and chlorpyrifos. Under the optimal conditions, the linear range was from 5.0 to 250 μg kg?1 for diazinon and from 2.5 to 250 μg kg?1 for chlorpyrifos. Limits of detection of diazinon and chlorpyrifos were 1.5 and 0.7 μg kg?1, respectively. Limits of quantitation of diazinon and chlorpyrifos were 5.5 and 3.0 μg kg?1, respectively. The precisions and recoveries also were investigated by spiking 10 μg kg?1 concentration in rice. The recoveries obtained were over 90 % with relative standard deviation (RSD%) below 9.0 %. The new approach was utilized to successfully detect trace amounts of diazinon and chlorpyrifos in different Iranian rice samples.  相似文献   

3.
In the present study, a new method based on microwave-assisted extraction and dispersive liquid–liquid microextraction (MAE–DLLME) followed by high-performance liquid chromatography (HPLC) was proposed for the separation and determination of oleuropein (Ole) and hydroxytyrosol (HyT) from olive pomace samples. The effective factors in the MAE–DLLME process such as microwave power, extraction time, the type and volume of extraction, and dispersive solvents were studied and optimized with the aid of response surface methodology (RSM) based on a central composite design (CCD) to obtain the best condition for Ole and HyT extraction. At the optimized conditions, parameter values were 220 W microwave power, 12 min extraction time, 60 μL extracting solvent, and 500 μL dispersive solvent. The calibration graphs of the proposed method were linear in the range of 10–500,000 μg L?1, with the coefficient of determination (R2) higher than 0.99 for Ole and HyT. Repeatability of the method, described as the relative standard deviation (RSD), was 4.12–5.63% (n?=?6). The limits of detection were 35 and 20 μg L?1 for Ole and HyT, respectively. The recoveries of these compounds in the spiked olive pomace sample were from 93 to 98%. The proposed method, MAE–DLLME–HPLC–UV, was an accurate, rapid, and reliable method when compared with previous methods.  相似文献   

4.
A vortex-assisted liquid–liquid microextraction (VALLME) method using hexanoic acid as extractant followed by high-performance liquid chromatography–diode array detection was developed for the extraction and determination of five phthalate esters (PAEs) including bis-methylglycol ester (DMEP), benzyl butyl phthalate (BBP), dicyclohexyl phthalate (DCHP), di-n-butyl phthalate (DBP), and di-n-octyl phthalate (DNOP) from liquor samples. In this method, hexanoic acid was employed as extraction solvent, because its density is lower than water. And vortex mixing was utilized as a mild emulsification procedure to reduce emulsification time and improve the effect of extraction. Under the studied conditions, five phthalate esters were successfully separated within 20 min and the limits of detection were 2.3 ng mL?1 for DMEP, 1.1 ng mL?1 for BBP, 1.9 ng mL?1 for DCHP, 1.2 ng mL?1 for DBP, and 1.5 ng mL?1 for DNOP, respectively. Recoveries of the PAEs spiked into liquor samples were ranged from 89 to 93 %. The precisions of the proposed method were varied from 1.6 to 2.6 % (RSD). The VALLME method has been proved to have the potential to be applied to the preconcentration of the target analytes. Moreover, the method is simple, high sensitivity, consumes much less solvent than traditional methods and environmental friendly.  相似文献   

5.
In this work a simple, rapid and sensitive method using dispersive liquid–liquid microextraction (DLLME) combined with UV–Vis spectrophotometry has been developed for the preconcentration and determination of trace amounts of aziridine in food simulants. The method is based on derivatization of aziridine with Folin's reagent (1,2-naphthoquione-4-sulphonic acid) and extraction of color product using DLLME technique. Some important parameters, such as reaction conditions, and type and volume of extraction solvent and disperser solvent were studied and optimized. Under optimum conditions, a linear calibration curve in the range of 2.0–350 ng mL?1 of aziridine was obtained. Detection limit based on 3Sb was 1.0 ng mL?1, and the relative standard deviation for 50 ng mL?1 of aziridine was 2.49c (n?=?7). The proposed method was applied for the determination of aziridine in food simulants.  相似文献   

6.
A simple, efficient and environmentally friendly method for the extraction and determination of five triazine herbicides in water and milk samples was developed by simultaneous liquid–liquid microextraction and carbon nanotube reinforced hollow fiber microporous membrane solid-phase microextraction coupled with high-performance liquid chromatography–diode array detection. The parameters that affect the extraction efficiencies, including the type and concentration of multi-walled carbon nanotube, type of membrane solvent and desorption solvent, the type and volume of the extraction solvent in sample solution, extraction time and temperature, the pH of sample solution, stirring rate, and ionic strength were investigated and optimized. Under the optimum conditions, the method shows a good linearity within a range of 0.5–200 ng mL−1 for water samples and 1–200 ng mL−1 for milk samples, with the correlation coefficients (r) varying from 0.9991 to 0.9998 and from 0.9989 to 0.9994, respectively. The limits of detection were in the range between 0.08 and 0.15 ng mL−1 for water samples and 0.3 and 0.5 ng mL−1 for milk samples, while the relative standard deviations varied from 4.6% to 6.9% and from 5.3% to 7.7%, respectively. The recoveries of the target analytes at spiking levels of 5.0 and 50.0 ng mL−1 were in the range from 86.6% to 106.8% for water samples and from 81.3% to 97.4% for milk samples. The results demonstrated that the developed method was an efficient pretreatment and enrichment procedure for the determination of triazine pesticides in real water and milk samples.  相似文献   

7.
In this study, a two-step extraction technique was developed for extraction and preconcentration of parabens from beverage samples using ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) and magnetic solid-phase extraction (MSPE). In this IL-DLLME followed by MSPE method, ionic liquid (IL, 1-octyl-3-methylimidazolium hexafluorophosphate) formed hydrophobic microdroplets in beverage samples as an extractant of parabens; after the IL-DLLME process was completed, graphene modified Fe3O4 nanoparticles (Fe3O4@G) were placed to adsorb and isolate IL from the sample solution. After the supernatant was carefully moved, acetonitrile was added to elute the IL containing parabens from Fe3O4@G. The experimental variables affecting the extraction procedure have been systematically studied. Under optimal conditions, the detection limits were less than 1.53 ng/mL and the linear detection ranges were 2–500 ng/mL (R 2 ≥ 0.998) for these analytes. The recoveries for spiked samples were 58.8–89.2% and satisfactory precision (RSD ≤ 4.8%) were obtained.  相似文献   

8.
A simple, rapid, and effective method was developed for preconcentration of neonicotinoid insecticides including clothianidin, imidacloprid, acetamiprid, and thiacloprid in fruit juice samples. Room-temperature ionic liquids [C4MIM][PF6] can be used as green extractant phases in vortex-assisted liquid–liquid microextraction (VALLME), being compatible with high-performance liquid chromatographic systems. The effect of extraction parameters, including the addition of salt, volume of (C4MIM)(PF6), vortex time, and centrifugation time is identified as the key parameters of the method. Under the selected conditions, the high enrichment factors of 100 could be achieved with the limit of detection in the range of 0.25–0.30 ng mL?1 and with the relative standard deviations of lower than 2.68 and 5.38 % for retention time and peak area, respectively. The proposed method was applied to the analysis of fruit juice samples, and the recoveries of the analytes ranged from 95 to 108 % and relative standard deviations were lower than 7 %. The developed method proposes advantages in reduction of the exposure danger to toxic organic solvents used in the conventional liquid–liquid extraction, simplicity of the extraction processes, rapidity, and sensitivity improvement.  相似文献   

9.
In this study, dispersive solid phase extraction (DSPE) combined with dispersive liquid–liquid microextraction (DLLME) method was developed for the determination of triazole fungicide residues in tea samples. DSPE with ODS C18, primary secondary amine, and florisil as sorbents was applied to clean up and minimize matrix interference from tea samples; it was followed with the enrichment of target compounds in the DLLME procedure and detection with liquid chromatography–tandem mass spectrometry (LC-MS/MS). The effects of various experimental parameters on the DSPE and DLLME procedures were studied systematically, such as the kinds and volume of sorbents, extraction and dispersive solvents, and extraction time. Under optimum conditions, the method was validated in a tea matrix. The matrix-matched calibration curves of three triazoles had good linearity in the range of 0.0125–50 μg kg?1, and the linear regression coefficients (r) ranged from 0.9998 to 0.9999. The limits of quantification (S/N?=?10) for penconazole, tebuconazole, and triadimenfon were 4.0, 7.8, and 31.6 ng kg?1, respectively. The intra-day and inter-day relative standard deviations varied from 3.6 to 18.6 %. Recoveries in three concentration levels were between 91 and 118 %. The obtained results show that the proposed DSPE-DLLME-LC-MS method has the potential to analyze trace fungicides in a complex sample matrix.  相似文献   

10.
A new rapid method for direct determination of trace levels of sorbic and benzoic acids was developed by dispersive liquid–liquid microextraction and gas chromatography with flame ionization detection. In the proposed approach, the separation procedure of sorbic and benzoic acids was performed on a general chromatographic column without any prior derivatization processes. Some effective parameters on the microextraction recovery were studied and optimized utilizing multilevel factorial and central composite experimental designs. The best concurrent extraction efficiency acquired using ethanol and chloroform as dispersive and extraction solvents. Central composite design (CCD) resulted in the optimized values of microextraction parameters as follows: 1.0 mL of dispersive and 0.1 mL of extraction solvents, ionic salt concentration of 50 g?L?1 at pH 4. Under optimum conditions, the calibration curve was linear over the range 0.5–20 mg L?1. Relative standard deviation was 11% and 13% for five repeated determinations for sorbic and benzoic acids, respectively. Limits of detection were acquired as 0.2 mg L?1 for sorbic acid and 0.5 mg L?1 for benzoic acid. The average recoveries were 31% and 39% for sorbic and benzoic acids, respectively. The method was successfully applied to the determination of sorbic and benzoic acids as preservatives in beverage samples.  相似文献   

11.
In this research, a new and green procedure based on the cationic surfactant-assisted switchable solvent-based dispersive liquid–liquid microextraction (CS-SS-DLLME) with UV-vis spectrophotometry was used for the extraction and determination of the Orange II dye in food samples. The main feature of the switchable solvent is the simple and reversible conversion of polarity protonated triethylammonium carbonate (P-TEA-C, ionic) to triethylamine (TEA, nonionic) by adding NaOH. This extraction method is based on hydrophilicity switchable solvent and ion pair effect of cationic surfactant. Simplicity, high-performance extraction, rapidity of the process, increase of stability, and reduction of the extractive phase volatility are other advantages of the proposed method. The parameters including the extraction and preconcentration of Orange II were studied and optimized. Under optimal conditions, the calibration curve was linear within the range of 2–450 μg/L and the detection limit was 0.9 μg/L and the relative standard deviation (RSD) for 80 μg/L of Orange II was 1.68%. This developed method was used successfully for the determination of Orange II in food samples.  相似文献   

12.
In this study, a green, simple, and sensitive method was developed for the analysis of aliphatic aldehydes from fried meat by using a modified gas purge–microsyringe extraction (GP–MSE) system in combination with high-performance liquid chromatography (HPLC) with fluorescence detection. The modified GP–MSE system possessed two gas channels and showed better recoveries for compounds with diverse density in comparison with one gas channel GP–MSE system. Target compounds in fried meat were effectively extracted without the traditional solvent extraction and lipid removing process, while the HPLC sensitivity of aldehydes was enhanced by introducing 2-(12-benzo[b]acridin-5(12H)-yl)-acetohydrazide (BAAH) with excellent fluorescence property into the molecules. Parameters influencing the extraction efficiency and HPLC sensitivity were optimized. The limits of detection (LODs) ranged from 0.30 to 0.45 μg/kg, and the limits of quantification (LOQs) ranged from 1.0 to 1.5 μg/kg. The recoveries of the target compounds were in the range of 86.9 to 95.6%. The proposed method was successfully applied to the analysis of aldehydes in fried meat samples. Formaldehyde, acetaldehyde, pentanal, hexanal, heptanal, octanal, nonaldehyde, and decanal were all found in fried meat samples with concentrations ranging from 0.05 to 17.8 mg/kg.  相似文献   

13.
A simple surfactant-solvent-based quaternary component emulsification microextraction (SSEME) method combined with high-performance liquid chromatography–photodiode array detection has been developed for the extraction, preconcentration, and determination of four benzimidazole anthelmintic (i.e., oxfendazole, mebendazole, albendazole, and fenbendazole) residues in milk samples. The quaternary component solvent of SSEME carried out in 10 mL aqueous solution were Triton X-114 (emulsifier or carrier), acetonitrile (disperser solvent), and 1-octanol (extraction solvent). The surfactant has an important role in the enhancement of the extraction efficiency of the high polar analytes. For milk sample analyses, linearity was obtained in the range of 10–200 μg/L with the determination coefficients (R 2) higher than 0.996. Preconcentration factor was obtained in the range of 21–38, corresponding to limits of detection in the range of 2.6–9.9 μg/L. Intra-day (n?=?6) and inter-day (n?=?6?×?3) precisions in the sample studied were obtained with relative standard deviation below 8.8 %. The recoveries for the spiked target anthelmintics at different concentrations (25, 50, 100, and 150 μg/L) were obtained in the range 80.1–114.1 %. The proposed SSEME method has been demonstrated that is simple, effective, and reliable for the analysis of analytes in the samples studied and can be used as an alternative green analytical technique for benzimidazole analysis.  相似文献   

14.
A dispersive liquid–liquid microextraction (DLLME) method coupled to high-performance liquid chromatography was developed for the analysis of α-tocopherol in grain samples. The DLLME parameters including the type and volume of extractants, the volume of disperser and the addition of salt were examined. The optimized DLLME procedure consisted in the formation of a cloudy solution promoted by the fast addition to the sample (5 mL of saponified sample solution diluted with 5 mL of water) of a mixture of carbon tetrachloride (extraction solvent, 80 μL) and ethanol (dispersive solvent, 200 μL) without the addition of salt, followed by shaking for 5 min and centrifuging for 3 min at 5,000 rpm. Intra- and inter-day repeatability expressed as % RSD were 3.5 and 7.6 %, respectively. The limit of detection and the limit of quantification were 1.9 and 6.3 μg?L?1. The comparison of this method with the national standardized extraction method, supercritical carbon dioxide extraction, accelerated solvent extraction, and conventional heat-reflux extraction indicates that the DLLME was accurate (no significant differences at the 0.05 % probability level), high efficient, low organic solvent-consuming, and low cost. This procedure was successfully applied to 42 samples of 14 types of purple wheat, for which the content of α-tocopherol exhibited a significantly negative correlation with the pigment content measured by a spectrophotometer. The recovery rates ranged from 90.5 to 103.7 %.  相似文献   

15.
The application of aqueous two-phase extraction for the downstream processing of lipase has been exploited. The influence of system parameters such as phase forming salts, molecular weight of the phase forming polymer, system pH, tie line length, and phase volume ratio on the partitioning behavior of lipase was evaluated. The aqueous two-phase system consisting of PEG6000 and disodium phosphate (Na2HPO4) resulted in one-sided partitioning of lipase with partition coefficient 0.11, activity recovery 116%, and purification factor of 2.25. Further, the purity of lipase was increased to 3.59-fold using multi-stage extractions.  相似文献   

16.
A fast, efficient, and simple method for determination of pesticide residues in pumpkin seeds has been developed combining QuEChERS and dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography and mass spectrometry (GC-MS). Parameters affecting the DLLME performance such as solvent selection and volume of extractive and dispersive solvent, salt effect, and extraction time were studied. Under the selected conditions (50 μL extractive solvent chloroform, 1 mL QuEChERS extract, and 3 mL water), the developed method was validated. Linearity was evaluated at nine concentrations in the broad range of 0.1–500 μg/kg with correlation coefficients from 0.9842 to 0.9972. The relative standard deviations at lowest calibration level varied from 0.3 to 22 %. Under the optimum conditions, an enrichment factor was 6–17-fold and detection limits 0.01–12.17 μg/kg were achieved. Finally, the developed and validated method was successfully applied for the extraction and determination of pesticide residues in 16 real samples with 2 positive findings below maximum residue limits (MRL). Limits of detection (LODs) of the proposed method are below the MRLs established by the European Union.  相似文献   

17.
A simple and rapid dispersive liquid?Cliquid microextraction (DLLME) method was applied to preconcentrate sulfite ions from aqueous samples as a prior step to its determination by fiber optic-linear array detection spectrophotometry. The procedure is based on the color reaction of sulfite with o-phthaldialdehyde (OPA) in the presence of ammonia to form isoindole and extraction of the formed isoindole derivative using the DLLME technique. The conditions for the microextraction performance were investigated and optimized. The calibration graph was linear in the range of 2?C100???g?L?1with a detection limit of 0.2???g?L?1. The relative standard deviation for five replicate measurements of 10 and 50???g?L?1of sulfite were 2.8 and 2.0?%, respectively. Under the optimized conditions, the enrichment factor of ~133 was obtained from a sample volume of 10?mL. The proposed method was successfully applied to the sulfite determination in drinking water and in food samples.  相似文献   

18.
A fast and simple technique composed of dispersive liquid–liquid microextraction (DLLME) and micellar electrokinetic chromatography (MEKC) with diode array detector (DAD) was developed for the determination of multi-photoinitiators in fruit juice. Seven photoinitiators were separated in MEKC using a 25 mM borate buffer of pH 8.0, containing 24 mM sodium dodecyl sulfate (SDS), 10 mM β-cyclodextrin (β-CD), and 12.5 % acetonitrile (v/v). A CD-modified MEKC made this method more suitable for the determination of isopropylthioxanthone (ITX) isomers including 2-IXT and 4-ITX than the recently prescribed methods. A DLLME procedure was used as an offline preconcentration strategy. The satisfactory recoveries obtained by DLLME spiked at two spiked levels ranged from 85.6 to 124.7 % with relative standard deviations (RSDs) below 14 %. The limits of quantification (LOQs) ranged from 2.1 to 6.0 μg kg?1.  相似文献   

19.
A fast and simple method for the extraction of deoxynivalenol (DON) from wheat flour using dispersive liquid–liquid microextraction (DLLME) followed by high-performance liquid chromatography–UV detection has been developed and compared with immunoaffinity column cleanup (IAC) process. The influence of several important parameters on the extraction efficacy was studied. Under optimized conditions, a linear calibration curve was obtained in the range of 50–1,000 μg/L. Average recoveries of DON from spiked wheat samples at levels of 500 μg/kg for DLLME and IAC ranged from 72.9?±?1.6 and 85.5?±?3.1, respectively. A good correlation was found for spiked samples between DLLME and IAC methods. The limit of detection was 125 and 50 μg/kg for DLLME and IAC method, respectively. Advantages of DLLME method with respect to the IAC have been pointed out.  相似文献   

20.
A new sample preparation procedure combining QuEChERS and dispersive liquid–liquid microextraction (DLLME) was optimized for the determination at trace levels of 13 pesticides from different chemical families (i.e. 2,4-D, acetamiprid, bentazone, cymoxanil, deltamethrin, dicamba, diuron, foramsulfuron, mesotrione, metalaxyl-M, methomyl, pyraclostrobin and tembotrione) in tomato by high-performance liquid chromatography with diode array detection. Target pesticides from tomato samples were isolated by liquid partitioning with acetonitrile and salts and cleaned up by dispersive solid-phase extraction (d-SPE); the analytes were concentrated in trichloromethane by the DLLME procedure. The disperser solvent from DLLME was used at the same time as carrier of analytes form extraction in QuEChERS method. The main factors affecting sample cleanup by d-SPE in QuEChERS and DLLME yield were optimized by means of an experimental design. Under the optimum conditions, good linearity was obtained, the recoveries of pesticides in tomato samples at spiking levels between 0.01 and 1.00 mg/kg ranged from 86 to 116 % (for foramsulfuron and cymoxanil, respectively). Precision was within 15.0 % (RSD) except at the LQ for tembotrione, which was 17.4 %. Limits of quantification achieved (ranging from 0.0058 to 0.15 mg/kg) were below the maximum residue limits established by the European Union.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号