首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sequential changes of cerebral autoregulation were studied in 20 cats after recirculation of cerebral ischemia. The cerebral autoregulation was evaluated by autoregulation index (A.I.), calculating % delta cerebral blood flow (CBF)/delta cerebral perfusion pressure (CPP), with changing the mean arterial blood pressure (MABP) within 80-130 mmHg. Duration of ischemic insult was 15 min after disappearance of direct cortical response (DCR). Following recovery of cerebral circulation, MABP, CBF and intracranial pressure (ICP) were observed sequentially for at least 48 hours. In 6 of 20 cats the autoregulation was disturbed early after recirculation, and the ICP was increased, resulting in no cerebral blood flow (early deteriorated group). In the other 14 cats the autoregulation was restored immediately, but in 7 of the 14 cats it was disturbed again after 24 hours following recirculation (delayed deteriorated group), finally the ICP was elevated and the CBF became 0 as same as early deteriorated group. In another 7 cats it was not disturbed until 5 days. The changes in CBF following insult were five patterns. These were classified into type A (Gradual decrease), type B (Transient increase), type C (Constant maintenance), type D (Relatively rapid decrease) and type E (Rapid decrease). The delayed cerebral dysautoregulation occurred in the types except for type A and type E. These results suggested there was close relation between delayed dysautoregulation and delayed neuronal dysfunction that we reported previously. Moreover, we considered the delayed dysautoregulation could be speculated from the value of ICP/CBF immediately after recirculation and the pattern of the changes in CBF during ischemic insult.  相似文献   

2.
BACKGROUND: For neuroanesthesia and neurocritical care the use of drugs that do not increase or preferentially decrease intracranial pressure (ICP) or change cerebral perfusion pressure (CPP) and cerebral blood flow (CBF) are preferred. The current study investigates the effects of a single rapid bolus dose of cisatracurium on cerebral blood flow velocity, ICP, CPP, mean arterial pressure (MAP) and heart rate (HR) in 24 mechanically ventilated patients with intracranial hypertension after severe brain trauma (Glasgow coma scale <6) under continuous sedation with sufentanil and midazolam. METHODS: Patients were randomly assigned to receive either 2xED95 (n=12) or 4xED95 (n=12) of cisatracurium as a rapid i.v. bolus injection. Before and after bolus administration mean cerebral blood flow velocity (BFV, cm/s) was measured in the middle cerebral artery using a 2-MHz transcranial Doppler sonography system, ICP (mm Hg) was measured using an extradural probe, and MAP (mm Hg) and HR (b/min) were measured during a study period of 20 min. Cerebral perfusion pressure (CPP=MAP-ICP) was also calculated. RESULTS: Our data show that a single bolus dose of up to 4xED95 cisatracurium caused no significant (P<0.05) changes in BFV, ICP, CPP, MAP and HR. Possible histamine-related events were not observed during the study. CONCLUSIONS: The results from this study suggest that cisatracurium is a safe neuromuscular blocking agent for use in adult severe brain-injured patients with increased ICP under mild hyperventilation and continuous sedation.  相似文献   

3.
The effects of the opioids alfentanil (A), fentanyl (F), and sufentanil (S) on cerebral blood flow (CBF) and intracranial pressure (ICP) have been discussed in several recent publications. The purpose of this review is to describe the results of studies in animals, healthy volunteers, and patients with and without intracranial diseases. Clinical relevance and mechanisms of the reported ICP and CBF increases are analysed. METHODS. Approximately 70 original articles and abstracts were retrieved by a systematic literature search using the key word list at the end of this abstract. The cited studies came from computerised database systems like Silver Platter and DIMDI, the SNACC reference list, and the bibliographies of pertinent articles and books. These studies were classified into three groups: significant increase of ICP and/or CBF; no significant or clinically relevant alterations; and significant decreases of ICP and/or CBF. RESULTS. The numerical relationship was 6:7:3 for A, 7:16:9 for F, and 5:11:8 for S. Increases of previously normal or only slightly elevated ICP were registered in some studies in connection with a decrease in mean arterial pressure (MAP). On the other hand, in patients with brain injury and elevated ICP opioids did not further increase ICP despite MAP decreases. In studies monitoring ICP and/or CBF continuously, transient and moderate increases of questionable clinical relevance became apparent a few minutes after bolus injection of opioids. Alterations of systemic and cerebral haemodynamics observed after bolus application were not registered during continuous infusion of A and S. DISCUSSION AND CONCLUSIONS. The cerebral effects of opioids are dependent on several factors, e.g., age, species, ventilation, anaesthesia before and during measurements, systemic haemodynamics, and underlying diseases. The probable mechanism of ICP increase during decreasing MAP is cerebral vasodilatation due to maintained autoregulation. With increasing severity of the cerebral lesion autoregulation is often disturbed. Therefore, ICP often remains unaltered despite MAP decreases. However, the resulting decrease in cerebral perfusion pressure makes such patients more susceptible to develop ischaemic neurological deficits. Induction of somatic rigidity or (with high doses) convulsions, exceeding the upper limit of autoregulation, histamine release, cerebral vasodilatation, increased cerebral oxygen consumption, or carbon dioxide accumulation during spontaneous breathing were discussed as mechanisms for transient ICP/CBF increases. It is concluded that opioids are often beneficial and not generally contraindicated for patients with cerebral diseases and compromised intracranial compliance. However, since negative side effects cannot be excluded, opioid effects and side effects should be monitored (MAP, ICP, cerebrovenous oxygen saturation, transcranial Doppler sonography) in patients at risk. It has to be stressed that opioids should be administered only to patients with stable haemodynamic situations and preferably in well-titrated, continuous infusions.  相似文献   

4.
Diaspirin cross-linked haemoglobin (DCLHb) is a new oxygen carrying blood substitute with vasoactive properties. Vasoactive properties may be mediated via high affinity binding of nitric oxide by the haem moiety. Using a rodent model of head injury combined with ischaemia, we studied the effects of DCLHb on cerebral blood flow (CBF) and intracranial pressure (ICP). Twenty anaesthetized rats were allocated randomly to receive treatment with DCLHb 400 mg kg-1 i.v. or placebo (oncotically matched plasma protein substitute 4.5% i.v.). To produce diffusely increased ICP, after a severe weight drop injury, all animals underwent a 30-min period of bilateral carotid ligation combined with a period of induced hypotension. After reperfusion, DCLHb or placebo was infused and the animals instrumented for measurement of intraventricular ICP and CBF in the region of the sensorimotor cortex using the hydrogen clearance technique. Mean arterial pressure (MAP), ICP, cerebral perfusion pressure (CPP) (CPP = MAP - ICP) and CBF were measured 4 h after injury in all animals. DCLHb significantly reduced ICP from mean 13 (SEM 2) to 3 (1) mm Hg (P < 0.001), increased CPP from 52 (8) to 95 (6) mm Hg (P < 0.001) and increased CBF from 21 (2) to 29 (2) ml 100 g-1 min-1 (P = 0.032). We conclude that DCLHb improved CPP without a reduction in CBF in a rodent model of post-traumatic brain swelling.  相似文献   

5.
OBJECTIVE: Decreased cerebral blood flow (CBF) and cerebral ischemia occurring immediately after subarachnoid hemorrhage (SAH) may be caused by acute microvascular constriction. However, CBF can also be influenced by changes in intracranial pressure (ICP) and cerebral perfusion pressure (CPP). The goal of these experiments was to assess the significance of acute vasoconstriction after SAH and its relationship to changes in CBF, ICP, CPP, and extracellular glutamate concentrations. METHODS: Three experiments were performed using the endovascular filament technique to produce SAH. In the first experiment, CBF, ICP, and CPP were measured for 60 minutes after SAH (n = 21) and were correlated with the 24-hour mortality rate. In the second experiment, rats undergoing SAH (n = 23) or a sham procedure (n = 7) were perfused 60 minutes after SAH for measurement of the circumference and wall thickness of the internal carotid and anterior cerebral arteries and correlation with CBF, ICP, and CPP. In the third experiment (n = 11), extracellular glutamate concentrations determined by hippocampal and cortical microdialysis and high performance liquid chromatography were correlated with physiological changes. RESULTS: CBF reductions to less than 40% of baseline for 60 minutes after SAH predicted 24-hour mortality with 100% accuracy and were used to define "lethal" SAH. In contrast, ICP and CPP 60 minutes after SAH were not correlated with the mortality rate. The vascular circumference was significantly smaller in lethal than in sublethal SAH or sham-operated rats (P < 0.001). Vessel measurements were correlated with both CBF and hemorrhage size (P < 0.01). Extracellular glutamate concentration increased to 600% of baseline after lethal SAH in both hippocampus and cortex and was inversely correlated with CBF (r = 0.9, P < 0.001) but did not increase after sublethal SAH. CONCLUSION: Acute vasoconstriction after SAH occurs independently of changes in ICP and CPP and is associated with decreased CBF, larger hemorrhage size, persistent elevations of extracellular glutamate, and poor outcome. Acute vasoconstriction seems to contribute directly to ischemic brain injury after SAH. Further evaluations of pharmacological agents with the potential to reverse acute vasoconstriction may increase CBF and improve outcome.  相似文献   

6.
Little is known of the factors that regulate CBF in sleep. We therefore studied 10 lambs to assess the vasodilatory processes that underlie cerebral autoregulation during sleep. Lambs, instrumented to measure CBF (flow probe on the superior sagittal sinus), sleep state, and cerebral perfusion pressure (CPP), were rapidly made hypotensive by inflating a cuff around the brachiocephalic artery to reduce CPP to 30 mm Hg in each state. During control periods, cerebral vascular resistance (CVR in mm Hg/mL/min) was lower in active sleep (2.8 +/- 0.3, mean +/- SD, P < or = 0.001) than in wakefulness (3.9 +/- 0.6) and quiet sleep (4.3 +/- 0.6). The CVR decreased promptly in each state as CPP was lowered. The time (seconds) required for maximal cerebral vasodilation to occur was longer in active sleep (35 +/- 11) than in quiet sleep (20 +/- 6, P < or = 0.001) and wakefulness (27 +/- 11, P < or = 0.05). The CVR decreased less in active sleep (0.6 +/- 0.3, P < or = 0.001) than in quiet sleep (1.5 +/- 0.3), although the changes in CPP induced with brachiocephalic occlusion were equal in each state. In conclusion, our studies provide the first evidence that the vasoactive mechanisms that underlie autoregulation of the cerebral circulation function during sleep. Moreover, our data reveal that the speed and the magnitude of the vasodilatory reserves available for autoregulation are significantly less in active sleep than in quiet sleep.  相似文献   

7.
OBJECTIVES: This study was undertaken to examine whether a dihydropyridine Ca channel blocker, benidipine, increases cardiac NO levels, and thus coronary blood flow (CBF) in ischemic hearts. BACKGROUND: Benidipine protects endothelial cells against ischemia and reperfusion injury in hearts. METHODS AND RESULTS: In open chest dogs, coronary perfusion pressure (CPP) of the left anterior descending coronary artery was reduced so that CBF decreased to one-third of the control CBF, and thereafter CPP was maintained constant (103+/-8 to 42+/-1 mmHg). Both fractional shortening (FS: 6.1+/-1.0%) and lactate extraction ratio (LER: -41+/-4%) decreased. Ten minutes after the onset of an intracoronary infusion of benidipine (100 ng/kg/min), CBF increased from 32+/-1 to 48+/-4 ml/100g/ min during 20 min without changing CPP (42+/-2 mmHg). Both FS (10.7+/-1.2%) and LER (-16+/-4%) also increased. Benidipine increased cardiac NO levels (11+/-2 to 17+/-3 nmol/ml). The increases in CBF, FS, LER and cardiac NO levels due to benidipine were blunted by L-NAME. Benidipine increased cyclic GMP contents of the coronary artery of ischemic myocardium (139+/-13 to 208+/-15 fmol/mg protein), which was blunted by L-NAME. CONCLUSION: Thus, we conclude that benidipine mediates coronary vasodilation and improves myocardial ischemia through NO-cyclic GMP-dependent mechanisms.  相似文献   

8.
Osmotic agents are still the most common treatment for controlling intracranial hypertension (ICH). Mannitol, glycerol, sorbitol, and hypertonic serum saline are the agents currently available. This work was designed to compare mannitol and glycerol in a similar population of brain injured patients, randomly divided into two groups of eight. The following mean day parameters were obtained: number of infusions, hydric balance, mean arterial pressure (MAP), and intracranial pressure (ICP). Cerebral perfusion pressure (CPP) was calculated. Brain computed tomographies (CT) were obtained on arrival, at follow-up whenever justified and at discharge. For comparison of both groups a modified therapeutic intensity level (mTIL) was used. Both agents induced a statistically equally effective decrease on ICP and increase on CPP evaluated at one and two hours post infusion but the mean day mTIL showed a statistically significant difference in favour of glycerol. The possible explanations of this difference are discussed. According to our results mannitol would be most indicated as a bolus to control sudden rises in ICP whereas glycerol would be most indicated as a basal treatment.  相似文献   

9.
Cerebral autoregulation, the physiological regulatory mechanism that maintains a constant cerebral blood flow (CBF) over wide ranges of arterial blood pressure, was investigated in normotensive and spontaneously hypertensive rats by means of laser-Doppler flowmetry. Systemic arterial hypertension was produced at rates ranging from 0.02 mm Hg/second to 11 mm Hg/second by constant infusion of epinephrine and norepinephrine. Systemic arterial hypotension was produced at rates ranging from -0.03 mm Hg/second to -12 mm Hg/second, either by bleeding the animals into a reservoir or by compressing the abdomen. In those cases with a low rate of change in systemic arterial blood pressure (SABP), the measurements lasted for 5 +/- 2 minutes, and in those with a high rate of change in SABP, measurements lasted for 40 +/- 30 seconds. The purpose was to record the time of onset and course of autoregulation in the basal ganglia in response to slow or rapid changes in SABP. CBF in the basal gray matter remained at baseline values (i.e., autoregulation was functioning) if the rate of increase of SABP did not exceed a critical value (0.10 mm Hg/second in the normotensive rats; 0.35 mm Hg/second in the spontaneously hypertensive rats). When hypertension was produced at faster rates, CBF followed arterial blood pressure passively, and no autoregulatory response was observed for 2 +/- 1 minutes. Hypotension did not change the baseline CBF when it was not produced at a rate faster than -0.4 mm Hg/second in normotensive rats and -0.15 mm Hg/second in spontaneously hypertensive rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Hypothermia has a considerable protective effect during brain ischemia. On the other hand small increases of brain temperature have a remarkable effect on the exacerbation of neurological damage following an ischemic event. Hyperthermia of the brain tissue after severe head injury is described. The effect of acutely increased intracranial pressure on cerebrovenous blood temperature is not described yet. The aim of this study was to investigate the relationship between temperature in the cerebrovenous compartment (Tcv) and changes of the CPP in an animal model of raised intracranial pressure. METHODS: A thermocouple was inserted in the sagittal sinus in 9 pigs under general anesthesia. By stepwise inflating a supracerebral and infratentorial placed balloon catheter intracranial pressure (ICP) was increased and CPP concomitantly decreased. The central body temperature was measured simultaneously in the abdominal aorta (Ta) with a second thermocouple. RESULTS: In our model th Tcv was lower than Ta at the beginning of the ICP increase. The mean difference between Ta and Tcv, (delta Ta-cv) was 0.86 degree C (+/- 0.44) prior to ICP increase and 1.19 degrees C (0.58) at the maximum ICP increase. Thus, delta Tav increased during CPP reduction. This relation was represented by an adjusted R(square) of r2 = 0.89 (p < 0.001). CONCLUSIONS: The CPP decrease, caused by an increasing ICP, results in changes of the cerebrovenous blood temperature. Interpreting the present results the experimental situation of a relative colder cerebral compartment in comparison to the central body temperature has to be considered. However, the results imply, that simultaneous temperature monitoring of the central body temperature and the cerebrovenous blood temperature is an additional source of information about relative changes of the CBF.  相似文献   

11.
While intravenous and volatile anesthetics have widely differing effects on cerebral blood flow (CBF), clinical studies suggest that the relative differences in their effects on intracranial pressure (ICP) may be smaller. Because acute changes in ICP are determined primarily by changes in cerebral blood volume (CBV), we compared the impact of propofol, pentobarbital, and isoflurane on CBF and CBV in rats. Equipotent doses of the three agents were determined by tail-clamp studies. Animals were then anesthetized with propofol (20 mg/kg load, 38 mg.kg-1.h-1 infusion), pentobarbital (30 mg/kg load, 20 mg.kg-1.h-1 infusion), or isoflurane 1.6-1.8%. Two hours later, CBF and CBV were measured using 3H-nicotine as a CBF tracer, and 14C-dextran and 99mTc-labeled red cells as markers for cerebral plasma and red blood cell volumes (CPV and CRBCV), respectively. Total CBV was the sum of CPV and CRBCV. CBF was 2.0-2.6 times greater with isoflurane than with propofol or pentobarbital (137 vs. 67 and 52 ml.100 g-1.min-1, respectively). By contrast, while CBV was greater in the isoflurane group than in either the propofol or pentobarbital groups, the magnitude of the intergroup differences were much smaller (propofol = 2.49 +/- 0.28 ml/100 g; pentobarbital = 2.27 +/- 0.15 ml/100 g; isoflurane = 2.77 +/- 0.24 ml/100 g, mean +/- SD). These results suggest that the simple measurement of CBF may not adequately describe the cerebrovascular effects of an anesthetic, at least with respect to predicting the magnitude of the agents likely effects on ICP.  相似文献   

12.
BACKGROUND: The current study investigates the effects of sufentanil on cerebral blood flow velocity and intracranial pressure (ICP) in 30 patients with intracranial hypertension after severe brain trauma (Glasgow coma scale < 6). METHODS: Mechanical ventilation (FIO2 0.25-0.4) was adjusted to maintain arterial carbon dioxide tensions of 28-30 mmHg. Continuous infusion of midazolam (200 micrograms/kg/h intravenous) and fentanyl (2 micrograms/kg/h intravenous) was used for sedation. Mean arterial blood pressure (MAP, mmHg) was adjusted using norepinephrine infusion (1-5 micrograms/min). Mean blood flow velocity (Vmean, cm/s) was measured in the middle cerebral artery using a 2-MHz transcranial Doppler sonography system. ICP (mmHg) was measured using an epidural probe. After baseline measurements, a bolus of 3 micrograms/kg sufentanil was injected, and all parameters were continuously recorded for 30 min. The patients were assigned retrospectively to the following groups according to their blood pressure responses to sufentanil: group 1, MAP decrease of less than 10 mmHg, and group 2, MAP decrease of more than 10 mmHg. RESULTS: Heart rate, arterial blood gases, and esophageal temperature did not change over time in all patients. In 18 patients, MAP did not decrease after sufentanil (group 1). In 12 patients, sufentanil decreased MAP > 10 mmHg from baseline despite norepinephrine infusion (group 2). ICP was constant in patients with maintained MAP (group 1) but was significantly increased in patients with decreased MAP. Vmean did not change with sufentanil injection regardless of changes in MAP. CONCLUSIONS: The current data show that sufentanil (3 micrograms/kg intravenous) has no significant effect on middle cerebral artery blood flow velocity and ICP in patients with brain injury, intracranial hypertension, and controlled MAP. However, transient increases in ICP without changes in middle cerebral artery blood flow velocity may occur concomitant with decreases in MAP. This suggests that increases in ICP seen with sufentanil may be due to autoregulatory decreases in cerebral vascular resistance secondary to systemic hypotension.  相似文献   

13.
The relationship between intracranial pressure (ICP) and the development of vasospasm after subarachnoid hemorrhage caused by the rupture of an intracranial aneurysm was investigated. Eleven patients were divided into high (6 cases) and low (5 cases) ICP groups based on ICP data obtained during the perioperative period by continuous ICP monitoring. Transcranial Doppler ultrasonography was performed every 24 hours for 7 days and the severity, distribution, and duration of vasospasm were assessed. The high ICP group tended to have severe, prolonged, and diffuse vasospasm compared with the low ICP group. However, only duration of vasospasm was statistically different. The relationship between cerebral perfusion pressure (CPP) and the development of vasospasm was also examined. CPP had a less significant effect than ICP although similar tendencies for high ICP and low CPP were observed. High ICP worsens vasospasm and treatment for decreasing ICP with perioperative ICP monitoring has potential for avoiding the development of vasospasm.  相似文献   

14.
We hypothesized that chronic hypotension in normal vascular territories fed by arteriovenous malformation pedicles may reset the lower limit of autoregulation and allow flow to remain constant over a lower pressure range. We studied the effect of increasing systemic mean arterial pressure (SMAP) with phenylephrine on cerebral blood flow using a novel technique. Fourteen patients undergoing 15 procedures were studied before endovascular embolization of arteriovenous malformations under neuroleptic conscious sedation. Mean pressures were transduced via a 1.5-F intracranial microcatheter, which was passed under fluoroscopic guidance into the target feeding artery. The microcatheter was positioned (unwedged) at a point that was relatively hypotensive to systemic pressure but that irrigated normal cortex on angiography; feeding mean arterial pressure (FMAP) and SMAP were recorded. A bolus of 133Xe in saline was injected into the microcatheter, and washout was recorded for 3 minutes by a scintillation detector placed over the vascular territory of the injected pedicle. SMAP was then increased approximately 25 mm Hg by phenylephrine infusion, a second bolus was given, and washout was recorded. After exclusion of the shunt spike, initial slope was calculated. The SMAP (mean +/- standard error) increased from 65 +/- 3 to 89 +/- 2 mm Hg (P < 0.0001), and FMAP increased from 46 +/- 3 to 63 +/- 3 mm Hg (P < 0.0001); cerebral blood flow did not change (40 +/- 2 to 40 +/- 2 ml/100 g per min, P = 0.9199). Dividing the cases on the basis of the baseline FMAP into a "severe" hypotensive group (FMAP = 38 +/- 2; n = 7) and a "moderate" hypotensive group (FMAP = 54 +/- 3; n = 8), cerebral blood flow did not change in either group during phenylephrine challenge. Chronic hypotension does not necessarily result in "vasomotor paralysis" with loss of the ability to vasoconstrict to acute increases in perfusion pressure. Instead, it appears to displace adaptively the lower limit of autoregulation in affected vascular territories by a shift of the autoregulatory curve to the left, conceptually analogous to the adaptive displacement seen with chronic hypertension and its treatment.  相似文献   

15.
A therapy refractory brain edema is causally responsible for the death of approximately 50% of patients following severe craniocerebral trauma. The development of a brain edema which cannot be controlled by conservative means is also the most frequent cause of death with cerebral emergencies not caused by trauma. The cerebral perfusion pressure (CPP), which is the decisive factor for sufficient cerebral oxygenation, can be calculated on condition that the mean arterial pressure (MAP) and the intracranial pressure (ICP) are continually monitored: (CPP = MAP-ICP). On the basis of neurological observations, the computer tomographical results and the jugular vein oxymetry, an incipient cerebral decompensation and consequently the failure of the ongoing conservative treatment becomes apparent at an early stage. At this point at the latest, a bitemporal craniectomy should be considered for treatment. A drop in CPP to below 70 mmHg for adults and 50 mmHg for children is regarded as the intervention limits. Our experience shows that the outcome can be improved if the time of the bitemporal craniectomy lies before that of the cerebral decompensation.  相似文献   

16.
OBJECT: The authors studied the reliability of a new method for noninvasive assessment of cerebral perfusion pressure (CPP) in head-injured patients in which mean arterial blood pressure (ABP) and transcranial Doppler middle cerebral artery mean and diastolic flow velocities are measured. METHODS: Cerebral perfusion pressure was estimated (eCPP) over periods of continuous monitoring (20 minutes-2 hours, 421 daily examinations) in 96 head-injured patients (Glasgow Coma Scale score < 13) who were admitted to the intensive care unit. All patients were sedated, paralyzed, and ventilated. The eCPP and the measured CPP (ABP minus intracranial pressure, measured using an intraparenchymal microsensor) were compared. The correlation between eCPP and measured CPP was r=0.73; p < 10(-6). In 71% of the examinations, the estimation error was less than 10 mm Hg and in 84% of the examinations, the error was less than 15 mm Hg. The method had a high positive predictive power (94%) for detecting low CPP (< 60 mm Hg). The eCPP also accurately reflected changes in measured CPP over time (r > 0.8; p < 0.001) in situations such as plateau and B waves of intracranial pressure, arterial hypotension, and refractory intracranial hypertension. A good correlation was found between the average measured CPP and eCPP when day-by-day variability was assessed in a group of 41 patients (r=0.71). CONCLUSIONS: Noninvasive estimation of CPP by using transcranial Doppler ultrasonography may be of value in situations in which monitoring relative changes in CPP is required without invasive measurement of intracranial pressure.  相似文献   

17.
We measured the intracranial pressure (ICP) in 18 patients with severe head injury in the neurosurgical intensive-care unit before and after placement of a rigid collar for cervical spine immobilisation. The purpose of the study was to determine whether the rigid collars, commonly used to, prevent cervical spine movement during transport to the treatment facility could lead to an increase in ICP. Patients who had an epidural transducer in place were studied and their ICP recorded during placement of either the Spieth cervical collar (n = 12) or the Philadelphia cervical collar (n = 6). The baseline ICP was 17.0 +/- 6.1 mmHg versus 17.7 +/- 6.4 mmHg 10 min after placement of the cervical collar 5 min after removal the ICP was 17.2 +/- 5.9 mmHg. No significant changes in ICP could be demonstrated during this study. Placement of the cervical collar is a simple and practical measure to immobilize the cervical spine during rescue and transport of intubated and ventilated patients. Its risk of increasing the ICT appears to be low even in the patient with severe head injury.  相似文献   

18.
OBJECTIVE: To determine the effect of continuous hypertonic (3%) saline/acetate infusion on intracranial pressure (ICP) and lateral displacement of the brain in patients with cerebral edema. DESIGN: Retrospective chart review. SETTINGS: Neurocritical care unit of a university hospital. PATIENTS: Twenty-seven consecutive patients with cerebral edema (30 episodes), including patients with head trauma (n = 8), postoperative edema (n = 5), nontraumatic intracranial hemorrhage (n = 8), and cerebral infarction (n = 6). INTERVENTION: Intravenous infusion of 3% saline/acetate to increase serum sodium concentrations to 145 to 155 mmol/L. MEASUREMENTS AND MAIN RESULTS: A reduction in mean ICP within the first 12 hrs correlating with an increase in the serum sodium concentration was observed in patients with head trauma (r2 = .91, p = .03), and postoperative edema (r2 = .82, p = .06), but not in patients with nontraumatic intracranial hemorrhage or cerebral infarction. In patients with head trauma, the beneficial effect of hypertonic saline on ICP was short-lasting, and after 72 hrs of infusion, four patients required intravenous pentobarbital due to poor ICP control. Among the 21 patients who had a repeat computed tomographic scan within 72 hrs of initiating hypertonic saline, lateral displacement of the brain was reduced in patients with head trauma (2.8 +/- 1.4 to 1.1 +/- 0.9 [SEM]) and in patients with postoperative edema (3.1 +/- 1.6 to 1.1 +/- 0.7). This effect was not observed in patients with nontraumatic intracranial bleeding or cerebral infarction. The treatment was terminated in three patients due to the development of pulmonary edema, and was terminated in another three patients due to development of diabetes insipidus. CONCLUSIONS: Hypertonic saline administration as a 3% infusion appears to be a promising therapy for cerebral edema in patients with head trauma or postoperative edema. Further studies are required to determine the optimal duration of benefit and the specific patient population that is most likely to benefit from this treatment.  相似文献   

19.
OBJECTIVE: To compare the effect of ouabain on the blood pressure of rats with that of digoxin to find the evidences of the relationship between endogenous ouabain (EO) and development of hypertension. METHODS: Sprague-Dawley rats, which were divided into 3 groups, were infused with ouabain (23 x 75 micrograms.kg-1/day, i.p.), digoxin (36 x 84 micrograms.kg-1/day, i.p.) and normal saline (NS) once a day respectively. Systolic blood pressure and body weight were recorded weekly. Five weeks later, rats of ouabain group were randomly assigned to three infusion subgroups: Oc group, continued with ouabain infusion; Od group, added digoxin (73 x 68 micrograms.kg-1/day, i.p.) and Os group, stopped administration of ouabain. Another week later, direct blood pressure was recorded in aorta. Systolic and diastolic cardiac function, plasma renin activity and aldosterone levels of all the rats were measured. RESULTS: After a latent period of one week, blood pressure of Ouabain group increased significantly [95.4 +/- 11.8 mmHg (1 mmHg = 0.133 kPa) at the beginning of the experiment vs 122.5 +/- 16.9 mmHg at the end of week 6, P < 0.05] with normal plasma renin activity and higher aldosterone (1.28 +/- 0.45 ng/ml vs 0.69 +/- 0.27 ng/ml, P < 0.05). The blood pressure decreased after either withdrawal of ouabain or addition of digoxin (116.3 +/- 14.4 mmHg vs 100 +/- 10.7 mmHg, P < 0.05; 123.9 +/- 13.9 vs 103.3 +/- 10.5 mmHg, P < 0.05, respectively). No difference of blood pressure was found between the digoxin and NS group. CONCLUSIONS: Our results suggested that EO might be one of the causes of the development of hypertension. Aldosterone might play some role in the mechanism of ouabain-induced hypertension. Digoxin can not induce hypertension. There is a great difference between the effect of ouabain and digoxin on the blood pressure. Moreover, digoxin can reverse the hypertension induced by ouabain.  相似文献   

20.
Shock increases mortality from brain injuries, but the mechanism is poorly understood. We hypothesized that brain injury followed by shock and resuscitation leads to a secondary reperfusion injury mediated in part by polymorphonuclear leukocytes (PMNs). To validate this hypothesis, we studied cerebral perfusion pressure (CPP), intracranial pressure (ICP), cerebral blood flow (CBF), cortical water content (CWC), and hemodynamic variables in a porcine model of focal cryogenic brain injury and hemorrhagic shock. Cerebral PMN accumulation (CPMN) in the injured and uninjured hemispheres was determined histologically from the total PMNs in five high-power fields (400x). Twenty-nine mature swine were randomized to four groups. Group 1, the control group, was instrumented only. Group 2 animals had a brain injury alone and were studied for 24 hours. Group 3 animals had a brain injury and hemorrhagic shock. Group 4 animals had hemorrhagic shock alone. Brain injury followed by shock caused a significantly greater ICP and a significantly lower CBF than brain injury or shock alone. There was no significant difference in CPP between groups after resuscitation. The CWC of the lesioned area was similar in both brain-injured groups but was significantly increased when compared with the controls and the shock-only group. The CWC of the nonlesioned hemisphere was higher in group 3 than in group 2. The CPMN in both hemispheres in group 3 was significantly greater than in either group 2 or group 4. There was a significant positive correlation between CPMN and both ICP and CWC, and a significant negative correlation between CPMN and CBF. These data suggest an association between CPMN accumulation and secondary brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号