首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We determined the moisture levels, relative humidity (RH) or moisture content (MC) of materials, and concentrations of culturable fungi, actinomycetes and total spores as well as a composition of fungal flora in 122 building material samples collected from 18 moisture problem buildings. The purpose of this work was to clarify if the is any correlation between the moisture parameters and microbial levels or generic composition depending on the type of materials and the time passed after a water damage. The results showed an agreement between the concentrations of total spores and culturable fungi for the wood, wood-based and gypsum board samples (r > 0.47). The concentrations of total spores and/or culturable fungi correlated with RH of materials particularly among the wood and insulation materials (r > 0.79), but not usually with MC (r < 0.45). For the samples collected from ongoing damage, there was a correlation between RH of materials and the concentrations of total spores and culturable fungi (r > 0.51), while such a relationship could not be observed for the samples taken from dry damage. A wide range of fungal species were found in the samples from ongoing damage, whereas Penicillia and in some cases yeasts dominated the fungal flora in the dry samples. This study indicates that fungal contamination can be evaluated on the basis of moisture measurements of constructions in ongoing damage, but the measurements are not solely adequate for estimation of possible microbial growth in dry damage.  相似文献   

2.
Park JH  Cox-Ganser J  Rao C  Kreiss K 《Indoor air》2006,16(3):192-203
We investigated the associations of fungal and endotoxin levels in office dust with respiratory health in 888 (67% participation) occupants of a water-damaged building. We analyzed floor and chair dusts from 338 workstations for culturable fungi and endotoxin. Based on averages, we ranked each floor of the building as low, medium, or high for occupants' exposure to each of these agents. Multivariate logistic regression models for building-related symptoms included this ranking of fungi and endotoxin, age, gender, race, smoking status, and duration of occupancy. Using floor dust measures, we found significantly increased odds for lower respiratory symptoms [wheeze, chest tightness, attacks of shortness of breath, and attacks of cough: odds ratios (OR) = 1.7 (95% confidence interval (CI): 1.02-2.77) to 2.4 (95% CI: 1.29-4.59)], throat irritation [OR = 1.7, (95% CI: 1.06-2.82)], and rash/itchy skin [OR = 3.0, (95% CI: 1.47-6.19)] in the highest fungal exposure group compared to the lowest, with generally linear exposure-response relationships. Nonlinear relationships were observed for many of these symptoms and endotoxin in floor dust. Interaction models showed that endotoxin modified effects of fungi on respiratory symptoms. Our findings of exposure interactions and exposure-response relationships of fungal and endotoxin with increased risk of building-related symptoms contribute to an understanding of the role of microbial agents in building-related asthma and respiratory and systemic symptoms. PRACTICAL IMPLICATIONS: Our demonstration of exposure-response relationships between measurements of fungi and/or endotoxin in floor dusts and building-related symptoms implies that microbial agents in floor dust may be a good surrogate measure for dampness-related bioaerosol exposure, considering that measurements of microbial agents in air often fail to demonstrate the associations between exposure and health. In addition, our finding that endotoxin exposure may change the effect of fungal exposure (and vice versa) on respiratory heath suggests that exposure to both fungi and endotoxin should be assessed in epidemiological investigations examining the effect of fungal or endotoxin exposure on respiratory health in indoor environments.  相似文献   

3.
Macher JM 《Indoor air》2001,11(2):134-140
Details of a method to isolate culturable bacteria and fungi from carpet dust were evaluated to isolate the greatest numbers of these agents. Four broad groups were evaluated: mesophilic and thermophilic bacteria and moderately hydrophilic and xerophilic fungi. Features studied included: 1) mixing time; 2) addition of glass beads; 3) length of time dust settled before suspensions were plated; 4) relative concentrations of microorganisms in the fibrous and fine dust fractions; and 5) storage temperature and period. The findings are preliminary because of the small number of samples, but a votexing time of at least 2 min with glass beads gave the best results in terms of the highest estimate of the concentration of culturable bacteria or fungi. Microorganisms were retrievable-from the upper portion of a suspending liquid for at least 30 min with little detectable change in concentration. Both bacteria and fungi were more abundant in the fine than the fibrous dust fraction. No significant losses were observed for samples stored up to 25 days at 5 degrees C or 25 degrees C. This procedure optimized measurement of total concentration, but may not identify the range of genera and species in dust if microorganisms present in small numbers and as single units are underrepresented relative to those in clusters and aggregates.  相似文献   

4.
Qualitative reporting of home indoor moisture problems predicts respiratory diseases. However, causal agents underlying such qualitative markers remain unknown. In the homes of 198 multiple allergic case children and 202 controls in Sweden, we cultivated culturable fungi by directly plating dust, and quantified (1‐3, 1‐6)‐β‐d ‐glucan and ergosterol in dust samples from the child's bedroom. We examined the relationship between these fungal agents and degree of parent or inspector‐reported home indoor dampness, and microbiological laboratory's mold index. We also compared the concentrations of these agents between multiple allergic cases and healthy controls, as well as IgE‐sensitization among cases. The concentrations of culturable fungal agents were comparable between houses with parent and inspector‐reported mold issues and those without. There were no differences in concentrations of the individual or the total summed culturable fungi, (1‐3, 1‐6)‐β‐d ‐glucan, and ergosterol between the controls and the multiple allergic case children, or individual diagnosis of asthma, rhinitis, or eczema. Culturable fungi, (1‐3, 1‐6)‐β‐d ‐glucan, and ergosterol in dust were not associated with qualitative markers of indoor dampness or mold or indoor humidity. Furthermore, these agents in dust samples were not associated with any health outcomes in the children.  相似文献   

5.
Fungal exposure inside homes has been associated with adverse respiratory symptoms in children and adults. While fungal assessment has traditionally relied upon questionnaires, fungal growth on culture plates and spore counts, new immunoassays for extracellular polysaccharides (EPS) and beta (1-->3)-glucans have enabled quantitation of fungal agents in house dust in a more timely and cost-effective manner, possibly providing a better measure of fungal exposure. We investigated associations among measurements of EPS, beta (1-->3)-glucans and culturable fungi obtained from 23 Dutch homes. From each home, dust samples were vacuumed from the living room floor twice during the Fall, Winter and Spring seasons for a total of six collections (every 6 weeks from October 1997 to May 1998). Samples were sieved and fine dust was analyzed for EPS from Aspergillus and Penicillium spp. combined, beta (1-->3)-glucans and culturable fungi. EPS was positively associated with glucan; an increase from the 25th to the 75th percentile of glucan concentration was associated with a 1.6-fold increase in EPS concentration (95% CI = 1.3 to 2.0; p < 0.01). The most significant variables associated with EPS and glucan concentrations were the surface type that was vacuumed and the concentration of total culturable fungi (in colony forming units (CFU)/g dust), with an increase in CFU/g from the 25th to the 75th percentile associated with a 1.3 (1.1-1.6)-fold increase in glucan and a 1.7 (1.3-2.2)-fold increase in EPS concentrations. In addition, the within-home variation of EPS levels were smaller than those between homes (25,646 U/g vs. 50,635 U/g), whereas the variation of glucan levels was similar within and between homes (1,300 vs. 1,205 micrograms/g). These positive associations suggest that house dust concentrations of beta (1-->3)-glucan, and particularly those of EPS, are good markers for the overall levels of fungal concentrations in floor dust which is a surrogate for estimating airborne fungal exposure.  相似文献   

6.
Abstract Fungal spore content in dust accumulated in air ducts was investigated in 24 mechanically ventilated single-family houses of which 15 had also a central air heating system. Dust was collected from the ducts simultaneously with cleaning of the ventilation systems. Besides spore concentrations and flora of culturable fungi, total fungal spore concentrations were determined in dust samples by the aqueous two-phase technique and spore counting with epifluorescence microscopy. Culturable spore concentrations in the dust varied from 104 to 107 CFU/g and total spore concentrations from 107 to 108 spores/g. Total spore concentrations in the duct dust were significantly higher in the air heated houses than in the other mechanically ventilated houses. The difference resulted mainly from a higher proportion of recirculation air and a higher age of the air heated houses. Cladosporium, Penicillium, Aspergillus and yeasts consisted of >90% of fungal flora in the dust. Although total spore concentrations were at the same level both in the exhaust and in the supply ducts in both types of house, culturable fungal spore concentrations were slightly higher in the exhaust ducts than in the supply ducts. The proportion of culturable spores was <5% of total spores in dust accumulated in the ducts.  相似文献   

7.
The aim of this study was to investigate the effect of relative humidity (RH) on the aerosolization and total inflammatory potential (TIP) of microbial particles released from gypsum boards inoculated with dust samples from homes. After microbial colonization, the gypsum boards were incubated at either high or low RH. The aerosolized particles (0.54–19.8 μm), culturable fungi, β‐glucan and the TIP of the aerosolized particles were quantified. Despite the colonization of several fungal groups, Penicillium dominated the aerosolized fraction. Higher emission rates of particles and culturable fungi were found from low RH compared with high RH in both the inhalable and particulate matter <1 μm (PM1) fractions, and the TIP was accordingly higher. However, for the aerosolized fractions, the TIP or concentration β‐glucan relative to the number of fungi or particles present was higher from high RH compared with low RH. Despite the low number of culturable fungi in PM1, this fraction showed a high TIP, and the concentration of β‐glucan correlated strongly with the TIP of this fraction. The individual particles of the aerosolized PM1 fraction were more inflammatory than the larger particles of the inhalable fraction, and β‐glucan may be an important contributor to the inflammatory potential of the aerosolized particles.  相似文献   

8.
Green building materials are becoming more popular. However, little is known about their ability to support or limit microbial growth. The growth of fungi was evaluated on five building materials. Two green, two conventional building materials and wood as a positive control were selected. The materials were inoculated with Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum, in the absence and presence of house dust. Microbial growth was assessed at four different time points by cultivation and determining fungal biomass using the N‐acetylhexosaminidase (NAHA) enzyme assay. No clear differences were seen between green and conventional building materials in their susceptibility to support microbial growth. The presence of dust, an external source of nutrients, promoted growth of all the fungal species similarly on green and conventional materials. The results also showed a correlation coefficient ranging from 0.81 to 0.88 between NAHA activity and culturable counts. The results suggest that the growth of microbes on a material surface depends on the availability of organic matter rather than the classification of the material as green or conventional. NAHA activity and culturability correlated well indicating that the two methods used in the experiments gave similar trends for the growth of fungi on material surfaces.  相似文献   

9.
The aims of this work were to quantitatively and qualitatively study culturable fungi and bacteria in the air and settled dust in the storerooms of five Polish libraries and archives as well as to estimate the effect of water intrusion on the microbial air quality indoors. In all studied storerooms, the total bioaerosol concentrations at the workplaces ranged from 100 to 1000 cfu/m3. The most prevalent part of the storerooms’ bioaerosol consisted of bacteria, mainly Staphylococcus spp. and Micrococcus spp., followed by filamentous fungi. In four of the studied premises, fungal aerosol concentrations were below 100 cfu/m3. The only exception was observed in the fifth storeroom, which has been periodically flooded with rainwater and where significantly higher concentrations of fungal aerosol were measured. Among the identified fungal species, those of the genus Penicillium were the most numerous. Moreover, Trichothecium laxicephalum and Alternaria tenuis were present in all of the examined storerooms.  相似文献   

10.
This field study investigated the relationship between indoor and outdoor concentrations of airborne actinomycetes, fungal spores, and pollen. Air samples were collected for 24 h with a button inhalable aerosol sampler inside and outside of six single-family homes located in the Cincinnati area (overall, 15 pairs of samples were taken in each home). The measurements were conducted during three seasons - spring and fall 2004, and winter 2005. The concentration of culturable actinomycetes was mostly below the detection limit. The median indoor/outdoor ratio (I/O) for actinomycetes was the highest: 2.857. The indoor of fungal and pollen concentrations followed the outdoor concentrations while indoor levels were mostly lower than the outdoor ones. The I/O ratio of total fungal spores (median=0.345) in six homes was greater than that of pollen grains (median=0.025). The low I/O ratios obtained for pollen during the peak ambient pollination season (spring) suggest that only a small fraction penetrated from outdoor to indoor environment. This is attributed to the larger size of pollen grains. Higher indoor concentration levels and variability in the I/O ratio observed for airborne fungi may be associated with indoor sources and/or higher outdoor-to-indoor penetration of fungal spores compared to pollen grains. Practical Implication This study addresses the relationship between indoor and outdoor concentrations of three different types of bio-aerosols, namely actinomycetes, fungal spores, and pollen grains. The results show that actinomycetes are rare in indoor and outdoor air in Midwest, USA. Exposure to pollen occurs mainly in the outdoor air even during peak pollen season. Unexpectedly high fungal spore concentrations were measured outdoors during winter. The presented pilot database on the inhalable levels of indoor and outdoor bio-aerosols can help apportion and better characterize the inhalation exposure to these bio-aerosols. Furthermore, the data can be incorporated into existing models to quantify the penetration of biological particles into indoor environments from outdoors.  相似文献   

11.
Macher JM 《Indoor air》2001,11(2):99-110
Examination of settled dust is often included in investigations of indoor environments to identify the types and concentrations of particles to which building occupants may be exposed. Fungi and bacteria are among the many components in dust that have been studied. Isolation by culture is an established method that is used widely to quantify and identify microorganisms in environmental samples. However, no standard procedures for culturing fungi or bacteria from dust have been adopted widely to ensure the validity of comparing findings from different studies. This paper reviews methods various researchers have used to study surface particles and to isolate culturable microorganisms from dust. Factors that were found to differ included the method of sample collection, the ways dust was prepared for inoculation onto growth media, and the culture media chosen for specific categories of agents. The need for reference methods in environmental microbiology for use in the assessment of indoor environmental quality is discussed.  相似文献   

12.
We examined associations between observational dampness scores and measurements of microbial agents and moisture in three public schools. A dampness score was created for each room from 4‐point‐scale scores (0–3) of water damage, water stains, visible mold, moldy odor, and wetness for each of 8 room components (ceiling, walls, windows, floor, ventilation, furniture, floor trench, and pipes), when present. We created mixed microbial exposure indices (MMEIs) for each of 121 rooms by summing decile ranks of 8 analytes (total culturable fungi; total, Gram‐negative, and Gram‐positive culturable bacteria; ergosterol; (1→3)‐β‐D‐glucan; muramic acid; and endotoxin) in floor dust. We found significant (P ≤ 0.01) linear associations between the dampness score and culturable bacteria (total, Gram‐positive, and Gram‐negative) and the MMEIs. Rooms with dampness scores greater than 0.25 (median) had significantly (P < 0.05) higher levels of most microbial agents, MMEIs, and relative moisture content than those with lower scores (≤0.25). Rooms with reported recent water leaks had significantly (P < 0.05) higher dampness scores than those with historical or no reported water leaks. This study suggests that observational assessment of dampness and mold using a standardized form may be valuable for identifying and documenting water damage and associated microbial contamination.  相似文献   

13.
Culturable airborne fungi in outdoor environments in Beijing, China   总被引:3,自引:0,他引:3  
Airborne fungi are being proposed as a cause of adverse health effects. They may adversely affect human health through allergy, infection, and toxicity. Moreover, they have a great influence on urban air quality in Beijing. In this study, a systematical survey on the culturable airborne fungi was carried out for 1 year in Beijing urban area. Fungal samples were collected for 3 min, three times each day, and continued for three consecutive days of each month with FA-1 sampler from three sampling sites. Results showed that the culturable fungal concentrations ranged from 24 CFU (Colony forming units) /m3 to 13960 CFU/m3, and the mean and median was 1165 CFU/m3 and 710 CFU/m3, respectively. Fungal concentrations in the greener area around the Research Center for Eco-Environmental Sciences (RCEES) and Beijing Botanical Garden (BBG) were significantly higher than in the densely urban and highly trafficked area of Xizhimen (XZM) (***P<0.001), but no significant difference was found between RCEES and BBG (P>0.05). The variation of fungal concentrations in different seasons was significant in RCEES and BBG, where the concentrations were higher in Summer and Autumn, and lower in Spring and Winter. However, there were no significant differences in fungal concentrations between the Spring and the Winter for three sampling sites (P>0.05). Fourteen genera, including 40 species of culturable fungi, were identified in this study. Penicillium, with the most abundant species, which comprised more than 50% of the total isolated fungal species. Cladosporium were the most dominant fungal group, and contributed to more than one third of the total fungal concentration, followed by non-sporing isolates, Alternaria, Pencillium and Asperigillus. The concentration percentage of Cladosporium was significantly higher in RCEES than in XZM (*P<0.05), and the concentration percentages of Penicillium (**P<0.01) and Aspergillus (*P<0.05) were higher in XZM than in RCEES and in BBG. For other groups' concentration percentages, no significant differences were observed among the sampling sites. The distribution pattern of airborne fungi presented log-normal distribution. The highest proportion of culturable fungi was detected in stage 4 (2.0-3.5 microm), and the lowest was in stage 6 (<1.0 microm).  相似文献   

14.
We reviewed the literature on Indoor Air Quality (IAQ), ventilation, and building-related health problems in schools and identified commonly reported building-related health symptoms involving schools until 1999. We collected existing data on ventilation rates, carbon dioxide (CO2) concentrations and symptom-relevant indoor air contaminants, and evaluated information on causal relationships between pollutant exposures and health symptoms. Reported ventilation and CO2 data strongly indicate that ventilation is inadequate in many classrooms, possibly leading to health symptoms. Adequate ventilation should be a major focus of design or remediation efforts. Total volatile organic compounds, formaldehyde (HCHO) and microbiological contaminants are reported. Low HCHO concentrations were unlikely to cause acute irritant symptoms (<0.05 ppm), but possibly increased risks for allergen sensitivities, chronic irritation, and cancer. Reported microbiological contaminants included allergens in deposited dust, fungi, and bacteria. Levels of specific allergens were sufficient to cause symptoms in allergic occupants. Measurements of airborne bacteria and airborne and surface fungal spores were reported in schoolrooms. Asthma and 'sick building syndrome' symptoms are commonly reported. The few studies investigating causal relationships between health symptoms and exposures to specific pollutants suggest that such symptoms in schools are related to exposures to volatile organic compounds (VOCs), molds and microbial VOCs, and allergens.  相似文献   

15.
Abe K 《Indoor air》2012,22(3):173-185
Previously, the author proposed a 'fungal index' that quantifies the capacity for fungal growth in a test environment where a device (fungal detector) encapsulating spores of a xerophilic sensor fungus Eurotium herbariorum was placed. It was also found that an extremely xerophilic fungus, Aspergillus penicillioides, was suitable as a sensor fungus at sites with lower relative humidity (RH). In this report, the hydrophilic fungus Alternaria alternata was added to sensor fungi for the determination of the index in extremely humid environments. Measurements of the index and observations of the formation of spores by the sensor fungi were made in stable climates in moisture chambers, under natural conditions in homes, and in bathrooms prepared in an artificial climate chamber. Higher index values and earlier sporulation were obtained at higher RH in stable climates. The hydrophilic Alt. alternata showed the greatest response at 100% and 97.3% RH, the moderately xerophilic Eur. herbariorum, at 94%, 84%, and 75% RH, and the extremely xerophilic Asp. penicillioides, at 71% RH. In homes, the hydrophilic fungus was most active in water-usage areas, and the xerophilic fungi were most active in non-water-usage areas. Sporulation was observed on sensor fungi in fungal detectors placed in rooms where the index exceeded 18 ru/week after one-month exposure. Sites where the index exceeded 18 ru/week were referred to as damp, where fungal contamination seems to be unavoidable. Evaluations of ventilation systems in bathrooms with extremely humid climates showed typical examples of a countermeasure to fungal contamination. PRACTICAL IMPLICATIONS: The purpose of this study is to establish a fungal index applicable in home environments with extremely high to relatively low relative humidity climates. The sensor fungus that showed the greatest response in a fungal detector (a device encapsulating spores of sensor fungi) served as not only a quantitative but also a qualitative indicator of the environment tested, indicating the type of fungi that would contaminate the site. A fungal index would be a good tool for detecting dampness that induces fungal contamination, which has adverse effects on human health. Evaluations of indoor climates would provide information useful to building owners, builders, designers, advisers, medical practitioners, and so on. Selection of the most suitable insulation systems in various buildings under different climates or evaluations of the drying process in water-damaged buildings could also be possible using fungal detectors and measurements of fungal indices.  相似文献   

16.
Bioaerosol concentrations in residential buildings located in the Northeastern US have not been widely studied. Here, in 2011-2015, we studied the presence and seasonal variability of culturable fungi and bacteria in three multi-family apartment buildings and correlated the bioaerosol concentrations with building ventilation system types and environmental parameters. A total of 409 indoor and 86 outdoor samples were taken. Eighty-five percent of investigated apartments had indoor-outdoor (I/O) ratios of culturable fungi below 1, suggesting minimal indoor sources of fungi. In contrast, 56% of the apartments had I/O ratios for culturable bacteria above 1, indicating the prominence of indoor sources of bacteria. Culturable fungi I/O ratios in apartments serviced by central heating, ventilation, and air-conditioning (HVAC) system were lower than those in apartments with window AC. The type of ventilation system did not have a significant effect on the presence of indoor culturable bacteria. A significant positive association was determined between indoor dew point (DP) levels and indoor culturable fungi (P < .001) and bacteria (P < .001), regardless of ventilation type. Also, residents in apartments with central HVAC did not experience extreme DP values. We conclude that building ventilation systems, seasonality, and indoor sources are major factors affecting indoor bioaerosol levels in residential buildings.  相似文献   

17.
Abstract The National Institute for Occupational Safety and Health investigated respiratory symptoms and asthma in relation to damp indoor environments in employees of two hospitals. A cluster of six work‐related asthma cases from one hospital department, whose symptoms arose during a time of significant water incursions, led us to conduct a survey of respiratory health in 1171/1834 employees working in the sentinel cases hospital and a nearby hospital without known indoor environmental concerns. We carried out observational assessment of dampness, air, chair, and floor dust sampling for biological contaminants, and investigation of exposure‐response associations for about 500 participants. Many participants with post‐hire onset asthma reported diagnosis dates in a period of water incursions and renovations. Post‐hire asthma and work‐related lower respiratory symptoms were positively associated with the dampness score. Work‐related lower respiratory symptoms showed monotonically increasing odds ratios with ergosterol, a marker of fungal biomass. Other fungal and bacterial indices, particle counts, cat allergen and latex allergen were associated with respiratory symptoms. Our data imply new‐onset of asthma in relation to water damage, and indicate that work‐related respiratory symptoms in hospital workers may be associated with diverse biological contaminants.  相似文献   

18.
The purpose of this study was to characterize mold problem buildings by determining concentrations and flora of viable fungi. The composition and concentrations of fungal flora in mold problem (n = 9) and reference buildings (n = 9) were determined by means of four different sampling methods: six-stage impactor (Andersen sampler), sedimentation plate, surface and house dust samples. Samples were taken in the fall and in the winter, and the concentrations and flora in mold problem buildings were compared with those of matched reference buildings. The differences between mold problem and reference buildings were most clearly seen with the impactor samples. The total concentrations of airborne fungi were higher in moldy buildings. In addition, the concentrations of the genera Aspergillus and Oidiodendron in the fall and the concentrations of Aspergillus and Penicillium in the winter were higher in mold problem than in reference buildings. In the winter, certain fungal genera (Stachybotrys, Acremonium, Oedocephalum and Botryosporium) were detected only in the problem buildings in impactor samples. These results indicate that there may be an unusual composition of fungal flora in mold problem buildings. The results of the sedimentation plate samples showed a trend similar to that of impactor samples in the winter. In addition, the results of surface samples supported the data on the fungal flora in the winter-time air samples. The house dust samples did not reveal any differences between mold problem and matched reference buildings.  相似文献   

19.
This study aimed to clarify the determinants that affect the concentrations of ergosterol and viable fungi in house dust and to examine the seasonal variation and reproducibility of ergosterol concentrations indoors. In studying the determinants, dust samples from living room floors and vacuum cleaner dust bags were collected from 107 farming and 105 non‐farming homes. Ergosterol levels were determined with gas chromatography‐mass spectrometry, and the dust bag dust was cultivated for enumeration of fungal genera. Lifestyle and environmental factors, for example using of the fireplace, and visible mold observations in homes, explained 20–26% of the variation of fungal concentrations. For the reproducibility study, samples were collected from five urban homes in four different seasons. The reproducibility of ergosterol determinations within a sample was excellent (ICC = 89.8) for floor dust and moderate (ICC = 63.8) for dust bag dust, but poor when sampling the same home throughout a year (ICC = 31.3 and 12.6, respectively) due to large temporal variation in ergosterol concentrations. In conclusion, environmental characteristics only partially predicted the variation of fungal concentrations. Based on these studies, we recommend repeated sampling of dust over time if one seeks to adequately describe overall fungal levels and exposure in a home.  相似文献   

20.
Abstract A study was conducted to characterize the indoor environment of a multifloor, multiuse, nonproblem, noncompliant building through long-term monitoring for biological, chemical, and particulate pollutants. The study also assessed the effects of cleaning on indoor air quality by providing a program to monitor baseline levels, providing a rigorous (deep) cleaning of the building, and then continuing to monitor after implementation of a standardized, improved, cleaning program. To assess the effectiveness of the cleaning program, air, surface, and dust data from monitoring prior to the cleaning program were compared with those obtained while the improved housekeeping program was in place. Correlations between pollutants and other environmental factors were studied. The data suggest that the improved cleaning program contributed to indoor air quality through the reduction of airborne dust mass, total volatile organic compounds, and culturable bacteria and fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号