共查询到18条相似文献,搜索用时 62 毫秒
1.
为了解决小波降噪软阈值选择非最优以及SVM算法中惩罚参数、核函数参数的设置问题,将小波变换、支持向量机分别与量子行为粒子群优化算法QPSO(quantum-behaved particle swarm optimization,)相结合,利用QPSO优化小波阈值以及优化SVM输入参数,进行全局寻优,并将之应用到滚动轴承故障识别中。实验中,QPSO-WT滤波后信号具有更高的信噪比和更低的MSE,QPS0-SVM对10种不同状态的轴承进行故障诊断,对于多分类的情况该方法的识别精确度达到了87.67%,与SVM和RBF神经网络对比,从而进一步证明了该方法的有效性,说明该方法能够满足实际工况下的故障诊断要求。 相似文献
2.
现以油浸式变压器为研究对象,采用支持向量机算法,选择径向基作为核函数,根据参数特点,通过改进粒子群算法对其进行优化,进而对油浸式变压器进行故障诊断。通过仿真实验得出,所提基于改进PSO算法优化的SVM算法,不仅可以避免局部极值问题,而且对小样本数据处理有很好的泛化能力,在解决电力变压器故障诊断问题上有着一定的发展潜力。 相似文献
3.
滚动轴承处于早期故障阶段时,故障冲击特征成分难以提取,为了从轴承故障振动信号中提取特征参数,对轴承故障振动信号进行变分模态分解(Variational Mode Decomposition,VMD),得到若干个本征模态分量(IMFs),计算各个IMF的能量熵与样本熵,并利用主成分分析方法(PCA)对其进行特征融合。最后利用粒子群算法(PSO)优化的支持向量机(SVM)对融合特征进行故障模式识别。轴承故障实验分析结果表明,所提方法能够有效实现滚动轴承故障诊断。 相似文献
4.
改进粒子群算法优化的支持向量机在滚动轴承故障诊断中的应用 总被引:1,自引:0,他引:1
针对惩罚因子C和核参数g选择不当造成支持向量机(SVM)分类效果不理想的问题,在基本粒子群(PSO)算法基础上引入动态惯性权重、全局邻域搜索、种群收缩因子、粒子变异概率等操作,提出了一种新的改进型粒子群(IPSO)算法优化SVM参数的分类器。采用Libsvm工具箱中的公共数据集BreastTissue,Heart和Wine来测试其分类效果,结果表明IPSO-SVM分类器在预测精度和分类时间上明显优于SVM和PSO-SVM分类器。然后将其应用于滚动轴承的二分类问题和多分类问题的故障诊断中,仿真实验证明IPSOSVM分类器能显著提高全局收敛能力和收敛速度,可得到理想的分类结果。最后,用IPSO-SVM分类器对实际轴承进行故障诊断,结果验证了其拥有良好的分类稳定性,值得进一步在工程领域内推广。 相似文献
5.
6.
单一支持向量机在轴承齿轮故障诊断中精度较低,为了提高支持向量机在轴承齿轮故障诊断中的精度,对支持向量机的样本特征提取方法以及支持向量机参数优化的方法进行了研究。首先,通过核主成分分析方法构造支持向量机的输入样本,可以减少数据间的冗余,提取数据的高维信息;其次,通过粒子群优化算法优化支持向量机核函数参数和惩罚因子;最后,使用优化后的支持向量机模型进行故障诊断。通过实际轴承齿轮故障诊断对比实验,结果表明,所提方法相比一般的支持向量机诊断方法诊断精度大幅提高,验证了该混合智能诊断方法的有效性和优势。 相似文献
7.
8.
针对滚动轴承发生故障时,振动信号的时域和频域特征都会发生变化的特点,提出了基于集合经验模态分解(EEMD)、改进果蝇优化算法(MFFOA)和支持向量机(SVM)的滚动轴承故障诊断方法。该方法主要是利用EEMD方法对故障信号进行分解,并计算各IMF分量的均方根值和重心频率,以此进行归一化处理得到特征向量。为了提高诊断精度,采用果蝇优化算法优化SVM参数,建立MFFOA-SVM模型,然后对提取的特征向量进行训练与测试,从而识别故障与否及发生点蚀故障的程度。利用该方法对实测信号进行分析与诊断,并与遗传算法的优化结果进行对比,验证了该方法的有效性,说明其具有良好的应用前景。 相似文献
9.
10.
11.
针对支持向量数据描述(SVDD)算法对滚动轴承早期故障不敏感、参数选择困难的问题,提出了一种基于果蝇优化算法-小波支持向量数据描述(FOA-WSVDD)的滚动轴承性能退化评估方法。提取滚动轴承早期无故障振动信号的时域、时频域特征向量,并基于单调性进行特征选择;针对现有核函数对滚动轴承早期故障不敏感问题,将小波核函数引入到SVDD算法中;针对SVDD算法参数选择困难的问题,以支持向量个数与总样本数的比值作为适应度函数,采用改进的FOA算法对其核参数进行优化,建立FOA-WSVDD评估模型;最后,将轴承后期振动数据的特征向量输入到该WSVDD模型中,得到轴承的性能退化指标。试验结果表明,采用所提方法能准确地对轴承早期故障作出预警,与基于高斯核函数的SVDD算法相比,提前了17h。 相似文献
12.
微生物发酵过程中一些关键生物参数难以实时在线测量,严重影响发酵的优化控制。为解决关键生物参数的测量难题,采用了一种基于PSO-SVM的软测量方法。该方法利用粒子群优化(PSO)算法优化选择支持向量机(SVM)的最佳参数,并建立了基于PSO-SVM的软测量模型。利用赖氨酸发酵的数据对模型进行仿真验证,结果表明该模型具有很好的学习精度和泛化能力。另外在建模耗时上,PSO-SVM算法所用时间远少于标准SVM算法所用时间。 相似文献
13.
双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式全局核函数方法组成双核函数来改进TWSVM以提高其泛化能力和分类性能,并采用简化粒子群优化(simple particle swarm optimization,简称SPSO)方法来对权值和参数进行优化,提出了SPSO优化Multiple Kernel-TWSVM模型,将该模型应用到滚动轴承故障诊断模式识别中。实验结果表明,双核TWSVM比单核TWSVM和反向传播(back propagation,简称BP)神经网络具有更高的分类准确率。 相似文献
14.
15.
实车采集4种典型行驶工况数据,采用随机数法提取并扩充行驶工况识别训练及测试样本,利用多元统计理论对数据进行处理,基于粒子群优化的支持向量机(PSO-SVM)算法来进行行驶工况识别,分析了识别周期及更新周期对行驶工况在线识别精度的影响。将行驶工况识别技术应用在插电式混合动力汽车的能量管理策略中。仿真结果表明,相对于未采用行驶工况识别技术以及采用传统SVM算法进行工况识别的能量管理策略,基于PSO-SVM算法工况识别的能量管理策略使整车燃油经济性分别提高9.836%和4.348%,并且电池荷电状态(SOC)变化相对平稳,有利于提高系统效率和延长电池寿命。 相似文献
16.
应用带收缩因子的粒子群优化算法训练神经网络的权值矩阵,使神经网络的收敛速度大大提高,避免了其陷入局部最优解的缺陷;根据振动实验室齿轮箱实验数据,分析研究故障信号的特点,提取相应的特征参数,应用训练后的神经网络诊断齿轮箱的故障,实验表明故障诊断率较高。 相似文献
17.
基于模拟退火与LSSVM的轴承故障诊断 总被引:1,自引:1,他引:1
运用模拟退火与最小二乘支持向量机(least square support vector machine,简称LSSVM)轴承的故障诊断法,是在得到较优的λ和σ参数的同时进行特征选择获取显著特征子集.为验证所提方法的有效性,将4种运行状态、5种转速、2类载荷条件下测得的轴承振动信号作为研究样本,提取信号的52个特征.试验结果表明,该法对轴承故障分类的准确率较高,可有效用于旋转机械的状态监控. 相似文献
18.
为了提高车用燃料电池系统的安全可靠性和可维护性,考虑到其大量完整的故障样本难以获取,提出了一种基于二叉树多分类器的支持向量机故障诊断方法.首先,以自主研发的60 kW车用燃料电池系统为研究对象,分析了其故障机理和特征;然后,融合15种故障征兆参数并进行归一化预处理作为支持向量机的输入,以14种典型故障作为输出,选取径向基核函数并利用粒子群优化算法对支持向量机的惩罚参数和核函数参数进行优化,利用310组样本数据对其进行训练,通过90组测试样本测试实现了其典型故障的识别;最后,将支持向量机和神经网络分别在不同训练样本数下的故障诊断性能进行了对比.仿真结果表明,支持向量机具有较好的故障正判率和泛化能力,可有效用于车用燃料电池系统的多故障诊断. 相似文献