首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
双流道泵内非定常流动数值模拟及粒子图像测速测量   总被引:5,自引:0,他引:5  
为探讨双流道泵内部的非定常流动机理,采用Fluent软件,基于滑移网格技术、 湍流模型计算了一双流道泵在不同工况下的内部流动,并将计算结果与粒子图像测速仪(Particle image velocimeter, PIV)实测结果进行比较。结果表明:计算所得双流道泵内部流场符合叶轮机械内部流动的一般规律,且与PIV实测结果总体变化趋势一致;由于双流道泵结构特殊,其进口处的流动状态与普通叶轮相差较大,出口处的流动状态与普通叶轮类似;叶轮进口处,流体基本沿流道吸力面流动,流道工作面上的相对速度很小,存在严重的脱流和旋涡;叶轮出口处,压力面和吸力面的速度趋于相等,射流—尾迹现象并不明显;由于叶轮—蜗壳动静干涉,两个叶轮流道内的静压分布有所不同;同一流道内,静压随着半径的增加而逐步增大,压力面侧静压大于吸力面侧;蜗壳流道内静压随半径增大,最大静压值在隔舌处。此项研究不仅加深了人们对双流道泵内非定常流动图画的理解,从而进一步完善双流道泵设计方法,同时也可为其他类型泵的内流研究提供借鉴。  相似文献   

2.
采用Realizable k—ε湍流模型和SIMPLEC算法,对离心挖泥泵全流道内三维不可压湍流流动进行了数值模拟。根据计算结果分析了挖泥泵叶轮和泵壳磨损严重的原因,提出了在三维湍流数值分析基础上的挖泥泵叶轮优化设计方法。最终提高了效率,降低了叶轮磨损程度。  相似文献   

3.
为分析介质黏度对旋涡泵不同工况下的内流场及外特性的影响,由数值模拟方法分别对不同介质黏度和不同流量工况下的旋涡泵内流场结构及其外特性进行对比分析。分析结果表明:叶轮及侧流道内流动沿叶轮旋转方向从泵的进口至出口逐渐趋于稳定,各纵向截面上存在明显的纵向旋涡和径向旋涡,随着流量的增大,叶轮及侧流道内的纵向旋涡及径向旋涡强度逐渐减弱,叶轮做功能力逐渐降低,泵的扬程逐渐下降,叶轮内湍动能耗散及叶轮内的涡量分布均随着流量的增大而减小。随着介质黏度的增大,各纵向截面上的纵向旋涡和径向旋涡强度均逐渐减弱,旋涡泵内湍动能耗散随粘性的变化更为显著,其随着介质黏度的增加而显著增大。在各流量工况下,旋涡泵的扬程及效率均随着介质黏度的增加呈下降趋势;在小流量时,扬程及效率随黏度的增大而下降的趋势较为平缓,但在大流量工况时,扬程及效率随着黏度的增大而急剧下降。  相似文献   

4.
针对双流道泵小流量工况效率低、运行稳定性差等问题,通过CFD数值分析,对0.6Q_d、0.8Q_d、1.0Q_d、1.2Q_d工况下叶轮流动特性进行了压力、速度分布和隔舌处的压力脉动分析研究。结果表明:叶轮内压力分布存在明显的对称性,泵内各压力梯度所占区域随流量增加而增加,压力分布逐渐向高压区移动。叶轮截面1的速度随着流量增加而逐渐增大。在叶轮截面2内,叶轮内速度随着流量的增加而增加。叶轮进口旋涡随着流量增加而逐渐减小。流体经过截面2旋涡后,在截面3两侧流道内分别形成两个单独流动旋涡。在叶轮截面3内,叶轮流道内速度随着流量增加逐渐上升。隔舌处压力脉动具有周期性。设计工况下相邻波峰与波谷相差31.3 kPa。  相似文献   

5.
《流体机械》2016,(5):31-36
为研究双吸双流道泵的固液两相流动规律,本文基于CFD性能预测方法,计算泵在不同沙粒直径、不同沙粒浓度、不同流量工况的内部流动规律与外部特性曲线,并与单相流进行对比分析。研究结果表明:含沙多相流,流道中的压力梯度更大,压差分布更明显;流道内的脱流损失更严重,漩涡区域更明显,叶轮出口与蜗壳进口的动静耦合作用更剧烈;固相颗粒主要集中在叶轮的上下盖板处以及靠近蜗壳出口侧的流道区域;叶轮流道进口处的颗粒相对较少,出口处的颗粒相对较多;颗粒直径的变化对固相的离析作用明显,随着泥沙直径与流量的增大,泵的进出口总压差减小,随着泥沙浓度的增大,泵进出口总压差增大。  相似文献   

6.
《机械科学与技术》2017,(3):329-334
为了研究转速对深海采矿矿浆泵内部流动特性及对工作性能的影响,应用欧拉模型,RNGκ-ε(Renormalization-groupκ-ε)湍流模型及SIMPLEC算法,对矿浆泵叶轮及空间导叶内固液两相流场进行数值模拟,研究叶轮叶片和导叶叶片的绝对速度分布及外特性的影响。结果表明:随着转速n的增大,叶轮流道区域内的边界层更易分离,过流能力减弱,在叶轮出口处,射流-尾迹结构越强,水力损失越严重。空间导叶流道进口处的冲击更加猛烈,此区域流动愈加混乱,在导叶压力面进口处出现了范围更大的二次流。但随着转速n的增大,混合流体在导叶吸力面进口处的流动分离被抑制了,增大了过流能力,减弱了水力损失。  相似文献   

7.
为分析混合式油气混输泵内部流动情况、探索混合式叶轮结构对混输泵性能的影响,该文基于Pro/E及Fluent等软件,对混合式油气混输泵建立全三维流场。并采用Mixture多相流模型、 Standard k-epsilon湍流模型以及基于Pressure-Velocity耦合计算的Simple C算法。以理想状态的水和空气作为多相介质,通过改变含气率(GVF)等工况,分析了混合式油气混输泵的内部流动情况,以及不同外径的混流式叶轮对油气混输泵外特性的影响。结果表明:混合式油气混输泵相较于原型泵的扬程和效率得到提高,混流式叶轮内的气液分布较为均匀,随着混流式叶轮外径的增大,扬程提高越明显;在相同混流式叶轮外径下,随含气率提高,扬程逐渐下降,叶轮出口边出现气液分离,但流道内湍动能基本不发生变化。  相似文献   

8.
为研究泡状入流条件下旋流泵内气液两相流动特性规律,对旋流泵进行了全流道数值模拟,并通过试验对其进行验证,分析不同入口体积含气率及不同液相流量对旋流泵内部流动结构演化的影响,并探讨流动结构与外特性的关联。结果表明,在1%~20%入口体积含气率条件下,气泡进入旋流泵后大部分聚集在叶轮轮毂附近,泵内气液两相流型主要有3种,分别为凝聚气泡流、气囊流和气液分离流;当入口体积含气率为1%时,液相介质中少量气体的混入有助于泵压升和效率的提高,而当含气率增大到5%时,泵内循环流旋涡数量增多,并且向无叶腔内聚集,从而增加了能量耗散,导致泵做功能力降低,进而降低了泵的性能。研究结果可为气液两相条件下旋流泵的优化设计和选型提供参考。  相似文献   

9.
《流体机械》2017,(10):58-63
以混流式核主泵水力模型为研究对象,基于三维不可压缩流体的N-S方程和RNG k-ε湍流模型,采用流体计算软件ANSYS-Fluent对不同工况下的混流式核主泵水力模型的三维湍流流场进行数值模拟。通过分析不同特征面上的流动状态,构建该泵内的典型时均流谱,为性能优化及内部流动控制提供参考。计算结果表明:高涡量区域主要分布在固体壁面、径向导叶流道以及球型压水室内出液管附近;靠近出液管附近存在旋涡,导致流动损失增加,但随着流量减小,此处的流动情况趋于稳定,旋涡减弱甚至消失;靠近球型压水室出液管段的旋涡及其相近的径向导叶流道内的复杂流动情况与球型压水室出液管的位置有一定关系,因此减小出液管附近的流动损失,对实现混流式核主泵流动控制具有重要意义。  相似文献   

10.
螺旋轴流式多相流泵适用于输送气液两相流介质,由于两相介质的密度不同,运动轨迹也不相同,气体以气泡的形式流动,在流动过程中大小和形态的转变可直观反映泵内流体参数的变化,通过设计试验系统观测以及数值模拟的两种方式结合对气泡轨迹进行研究。结果表明:在转速低于1200 r/min时,气泡在叶轮叶片骨线1/2处体积达到最大,与压力面接触破碎向吸力面运动,在导叶内气泡自身能量不足开始逆压力梯度回流,两相流通流情况差;转速高于1450 r/min时,叶轮内气泡数量增多、尺寸减小,开始出现叶顶间隙回流且强度不断增加,跨流道运动强度也逐渐增加,在叶顶间隙有明显的气泡冲撞并有叶顶间隙涡的形成,导叶内气泡的气泡跨流道运动导致在其出口尾缘出现气体涡旋,随转速的增加所占流道面积增大,阻碍两相流通流。  相似文献   

11.
为揭示低比转数离心泵性能曲线产生驼峰现象的内流机理,采用RANS方法算法对一低比转数离心泵2个方案(有驼峰和无驼峰)下的内部进行了全流场CFD计算,重点分析了驼峰现象产生时2个方案内部流动结构的差异。结果表明:性能曲线出现驼峰时,2个方案的靠近蜗壳隔舌的叶轮流道内的流动结构差异最为明显;该流道内叶片压力面的低速区会明显增大并伴有漩涡流动;该流道进口也会出现明显的漩涡流动引起进口冲击损失增加;同时该流道出口的"射流-尾迹"现象也会突变,引起出口(混合)水力损失增加。因此这些损失的增大是引起驼峰现象的重要原因。  相似文献   

12.
A mathematical model is set to evaluate the 3-D dense solid-liquid two-phase turbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulated with the tool of IPSA. Meanwhile, resort to TECPLOT as the post-processor, the simulation results is visualized. The results show the main flow characteristics: There exists backflow and aberrant velocities at inlet area and a relative velocity slip between two phases; A jet-wake flow pattern is discerned around the shroud-suction side area; The relative velocity vector of solid phase is closer to the pressure surface than that of liquid phase and the trend is more obvious with the increase of diameter; The kinetic energy of turbulence k and the dissipation rate s reach their peaks at the corner of pressure and suction surface. The simulation results show a good agreement with the experimental flow features in the impeller channel, which prove the turbulent model used is valid and provide a theoretical design basis to non-clogging pu  相似文献   

13.
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.  相似文献   

14.
基于CFX采用数值模拟方法计算轴流泵导叶进口边与叶轮叶片出口边的平行间距S的变化对泵装置性能的影响。在质量守恒定理和动量守恒定理的基础上,应用Navier-Stoke方程和标准k-ε湍流模型,通过对轴流泵全流道三维湍流数值模拟,求解了导叶出口处的速度场和压力场。分析了S=9mm,S=12mm,S=15mm 3种情况下,流量、扬程、功率和效率的关系,研究了轴流泵导叶进口边与叶轮叶片出口边的平行间距的变化对泵装置性能的影响。  相似文献   

15.
Current research on the stability of tubular pumps is mainly concerned with the transient hydrodynamic characteristics. However, the structural response under the influence of fluid-structure interaction hasn’t been taken fully into consideration. The instability of the structure can cause vibration and cracks, which may threaten the safety of the unit. We used bidirectional fluid-structure interaction to comprehensively analyze the dynamic stress characteristics of the impeller blades of the shaft extension tubular pump device. Furthermore, dynamic stress of impeller blade of shaft extension tubular pump device was solved under different lift conditions of 0° blade angle. Based on Reynolds-average N-S equation and SST k-ω turbulence model, numerical simulation was carried out for three-dimensional unsteady incompressible turbulent flow field of the pump device whole flow passage. Meanwhile, the finite element method was used to calculate dynamic characteristics of the blade structure. The blade dynamic stress distribution was obtained on the basis of fourth strength theory. The research results indicate that the maximum blade dynamic stress appears at the joint between root of inlet side of the blade suction surface and the axis. Considering the influence of gravity, the fluctuation of the blade dynamic stress increases initially and decreases afterwards within a rotation period. In the meantime, the dynamic stress in the middle part of inlet edge presents larger relative fluctuation amplitude. Finally, a prediction method for dynamic stress distribution of tubular pump considering fluid-structure interaction and gravity effect was proposed. This method can be used in the design stage of tubular pump to predict dynamic stress distribution of the structure under different operating conditions, improve the reliability of pump impeller and analyze the impeller fatigue life.  相似文献   

16.
The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D simulations are carried out using the SST k-ω turbulence model in pump mode under different guide vane openings.The numerical results agree with the experimental data.The entropy production theory is introduced to determine the flow losses in the whole passage,based on the numerical simulation.The variation of entropy production under different guide vane openings is presented.The results show that entropy production appears to be a wave,with peaks under different guide vane openings,which correspond to wave troughs in the external characteristic curves.Entropy production mainly happens in the runner,guide vanes and stay vanes for a pump turbine in pump mode.Finally,entropy production rate distribution in the runner,guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region.The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics.In addition,the losses mainly occur in the runner inlet near the band and on the suction surface of the blades.In the guide vanes and stay vanes,the losses come from pressure surface of the guide vanes and the wake effects of the vanes.A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine,and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery.  相似文献   

17.
We performed numerical simulations to study the flow characteristic in a centrifugal pump based on the RANS equations and the RNG k-ε turbulent model. The flow field, including the front and back pump chambers, the impeller wear-ring, the impeller passage, the volute casing, the inlet section and outlet section was calculated to obtain accurate numerical results of fluid flow in a centrifugal pump. The flow characteristic was studied from the internal flow structure in pump chambers, the radial velocity at impeller outlet as well as the pressure inside of the pump, the circumferential velocity and the radial velocity in front pump chamber. The variation of flow parameters in internal flow versus flow rate in the centrifugal pump was analyzed. The results show that the overall performance of the pump is in good agreement with the experimental data. The simulation results show that the distribution of flow field in the front pump chamber is axial asymmetry. The energy dissipation at the impeller outlet is larger than other areas. The distribution of the circumferential velocity and that of radial velocity are similar along the axial direction in the front pump chamber, but the distribution of flow is different along the circumferential and the radial directions. It was also found that the vorticity is large at the impeller inlet compared with other areas.  相似文献   

18.

Multiphase pump is a cost-effective option for subsea oil and gas field development. The ability to handle different inlet gas volume fractions (GVFs) especially high inlet GVF is critical to the development of pump performance. In this study, the two-phase flow characteristics in normal impeller and split vane impeller at different inlet GVFs were investigated by steady numerical simulations. The gas distribution on blade-to-blade plane and meridional flow channel at different inlet GVFs were analyzed and compared. Gas accumulation area and movement characteristics of the gas-liquid flow in impeller flow passage were also pointed out by unsteady simulations. Experimental results of the pump differential pressure were compared with the numerical simulation results, to validate the accuracy of numerical simulation method. The flow characteristics in pump with modified impeller and its performance at different inlet GVFs were both compared with that of the normal impeller. The steady simulation results of normal impeller in different inlet GVFs show that gas concentrating area in the flow passage increases as inlet GVF grows. The unsteady simulation results indicate that gas pocket firstly occurs on the pressure side of impeller, then moves to the suction side in the middle area of blade and finally transfers to outlet of impeller and disappears. The errors between numerical simulation results and experiment data are below 10 %, which validated the feasibility of the numerical simulation method. Simulation results on the split vane impeller demonstrate that the gas accumulation area in flow passage of the modified impeller is dramatically decreased compared to that of the normal impeller. The performance of the modified impeller is generally better than the normal impeller especially in high inlet GVF conditions.

  相似文献   

19.
带分流叶片的离心泵叶轮内三维不可压湍流场的数值模拟   总被引:13,自引:4,他引:9  
对带分流叶片的离心泵叶轮内三维不可压湍流场进行数值模拟。计算采用雷诺时均方程和修正了的 湍流模型,在压强连接的隐式修正法(SIMPLE—C)建立的压力速度校正方程基础上,利用贴体坐标系和交错网格技术进行计算。计算结果揭示了带分流叶片离心泵叶轮内湍流流动的速度分布、压力分布规律,并对增加分流叶片后叶轮内部的流动状况进行了分析和研究,研究结果将对带分流叶片的离心泵进行性能预测和优化设计有指导 意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号