首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
采用光学显微镜、扫描电子显微镜和室温拉伸力学性能测试研究了搅拌铸造制备金属Ti颗粒增强AZ91D复合材料的搅拌温度(580 ~ 710℃)、速度(300 ~ 500 rpm)和时间(10 ~ 30 min)对Ti颗粒分布均匀性、微观组织和力学性能的影响.试验结果表明,复合材料铸锭底部的Ti颗粒体积分数比顶部高,提高搅拌...  相似文献   

2.
采用搅拌铸造法制备出了B4Cp/AZ91D复合材料.对该复合材料进行显微组织观察表明,B4C颗粒分布较均匀,通过对材料的室温拉伸性能及硬度测试,发现添加了B4C颗粒后硬度明显提高,拉伸强度也有所提高.  相似文献   

3.
原位合成TiC/AZ91复合材料力学性能的研究   总被引:1,自引:0,他引:1  
张修庆  李险峰  王浩伟 《铸造》2007,56(11):1178-1181
采用重熔稀释法原位制备了不同质量分数的TiC颗粒增强的镁基复合材料,并对复合材料进行了力学性能测试。结果表明,原位合成的镁基复合材料的强度相比基体合金有了明显提高,塑性稍微降低。镁基复合材料强度的增加主要是因为位错强化、弥散强化和细晶强化协调作用的结果。  相似文献   

4.
利用粉末冶金法制备不同含量(0.2wt%,0.4wt%,0.8wt%)碳化钽(TaC)颗粒增强的AZ91镁基复合材料,采用XRD、SEM、万能材料试验机对AZ91基体与TaC/AZ91复合材料的物相、宏观织构、力学性能以及断口进行表征.结果 表明,TaC的加入有效地细化了基体的晶粒尺寸,促进了中间相β-Mg17Al12...  相似文献   

5.
采用高能超声分散技术和金属型重力铸造工艺制备了CNTs/AZ91D镁基纳米复合材料,并对复合材料进行了固溶T4热处理和固溶时效T6热处理。T4态1.0CNTs/AZ91D复合材料的抗拉强度、伸长率分别为285 MPa、17.3%,与铸态复合材料的抗拉强度(196MPa)和伸长率(4.1%)相比,分别提高了45%、322%。T6态的抗拉强度进一步提高到296MPa,特别是屈服强度显著提高到155MPa,伸长率有所降低,但仍有5.5%。利用OM、SEM、TEM观察1.0CNTs/AZ91D复合材料的显微组织。结果表明,碳纳米管具有细化晶粒、促进滑移和孪生、载荷转移等作用,从而能够明显提高CNTs/AZ91D复合材料的综合力学性能。  相似文献   

6.
采用金相、X射线衍射、扫描电镜(SEM)、拉伸试验等方法分析和测试了挤压铸造纳米Si C颗粒增强AZ91D镁基复合材料在铸态(F)、固溶态(T4)和人工时效态(T6)下的组织和力学性能。结果表明,固溶处理可使n-Si Cp/AZ91D铸态组织中的β-Mg17Al12共晶相溶入到基体中,形成单一的过饱和α-Mg固溶体,合金抗拉强度和伸长率均有大幅提高,分别达到265 MPa和13.7%;经时效处理后,复合材料的抗拉强度和屈服强度进一步提高,分别为275,145 MPa;SEM结果显示,β-Mg17Al12相主要以连续析出/非连续析出方式分别在晶内及晶界上析出,特别是纳米Si C颗粒分布对二次析出相β-Mg17Al12的形貌、尺寸、分布有一定的影响,使二次析出相变得细小和弥散分布,从而充分发挥了二次析出相的沉淀强化作用;最后对n-Si Cp/AZ91D复合材料不同热处理条件下的断口形貌进行了SEM观察,并且对其断裂方式进行了分析和讨论。  相似文献   

7.
纳米SiC颗粒增强AZ91D复合材料的制备及性能   总被引:2,自引:0,他引:2  
利用高能超声辅助法制备纳米SiC颗粒(n-SiCp)增强AZ91D镁基复合材料(n-SiCp/AZ91D),并对其显微结构和室温力学性能进行测试分析。结果表明:纳米SiC颗粒的加入能够起到细化晶粒的作用,纳米颗粒在基体中的分布比较均匀,超声波辅助技术能够有效地分散纳米颗粒,在重力铸造下所制备的复合材料的抗拉强度、屈服强度和硬度均高于基体,尤其是屈服强度较基体提高了57%。  相似文献   

8.
采用搅拌铸造法制备了不同尺寸的SiCP增强AZ91D镁基复合材料,并对其显微组织和力学性能进行了研究。结果表明,当SiCp加入量为2%,SiC颗粒尺寸为0.5μm时,SiCp/AZ91D镁基复合材料晶粒细小,分布均匀。复合材料的抗拉强度达到150.6 MPa,与AZ91D基体相比提高了57.6%,但伸长率有所降低。  相似文献   

9.
挤压铸造准晶增强AZ91D镁基复合材料组织与性能   总被引:1,自引:0,他引:1  
为了改善AZ91D镁合金的性能,采用挤压铸造法制备了Mg-Zn-Y准晶中间合金增强AZ91D镁基复合材料,研究了准晶中间合金含量对复合材料组织和性能的影响。结果表明挤压铸造工艺可以有效细化晶粒,复合材料的显微组织主要由α-Mg基体、晶界上分布的β-Mg17Al12相以及Mg3Zn6Y准晶颗粒组成,准晶颗粒和α-Mg基体之间形成稳定结合。当准晶中间合金含量为5%时,抗拉强度和断后伸长率达到最大值,分别为194.3MPa和9.2%。复合材料的强化机制为细晶强化和准晶颗粒强化。  相似文献   

10.
采用低温粉末冶金及热挤压工艺制备了具有超细晶组织的0.1%CNTs/AZ91 (质量分数)镁基复合材料。通过SEM、XRD、TEM对镁基复合材料的微观组织进行了表征,并对其室温力学性能进行测试。结果表明:CNTs在复合材料中分布均匀,CNTs的加入使得复合材料的晶粒尺寸从0.552μm细化到0.346μm,并促进了β相的析出,同时弱化了基面织构。复合材料的抗压强度和屈服强度分别达到了617和445 MPa,较基体提高了8.8%和7.2%;其抗拉强度和屈服强度分别达到了393和352 MPa,与基体相比分别提高了4.5%和6.0%。对强化机制进行分析,发现细晶强化和载荷传递是0.1%CNTs/AZ91复合材料的主要强化机制。  相似文献   

11.
以Al-Ti-C为反应体系,采用热爆法在AZ91合金熔体中合成了TiC颗粒并对复合材料的摩擦磨损性能进行研究。结果表明,在750℃温度下,Al-Ti-C体系中Al含量为40%时,原位反应进行得最充分,生成的TiC颗粒细小,在复合材料中分布均匀。复合材料试样的摩擦磨损研究表明,当TiC含量在0%~5%时,复合材料的耐磨性能随着TiC含量的增加显著提高,磨损机理由AZ91基体的粘着磨损逐渐转变为磨粒磨损。  相似文献   

12.
采用粉末冶金法制备了不同配比的Si Cw/AZ91镁基复合材料,并研究了其显微组织和力学性能。结果表明,加入适量的SiCw后,SiCw弥散分布在晶界上,有效提高了镁基复合材料的强度和硬度。  相似文献   

13.
原位合成TiCp颗粒增强铸铁材料的研究   总被引:4,自引:0,他引:4  
闵学刚  孙扬善  高峻德  朱孔军 《铸造》2001,50(3):149-151
研究了原位合成TiC颗粒增强HT200基铸铁复合材料的工艺、组织和性能,结果表明,在空气中以SHS方法于熔体中合成TiC的制备工艺方法可行性不高,而以Ti-Fe合金形成在熔体中原位合成法可行,原位合成的TiC颗粒细化了材料的组织,减小了珠光体片层间距和石墨长度,改变了石墨形态,从而使材料的强度和硬度大幅提高,磨损试验结果亦显示,TiC颗粒的加入明显地提高了材料的耐磨损性能。  相似文献   

14.
混杂增强AZ91镁合金基复合材料   总被引:1,自引:3,他引:1  
采用挤压铸造成形法,成功地制备了具有不同含量与粒度的石墨颗粒与氧化铝短纤维混杂增强的镁合金基复合材料.对制备工艺、复合材料的显微组织及性能进行了研究,结果表明,增强相在复合材料中分布均匀,基体和增强相界面结合紧密,无明显铸造缺陷.复合材料的硬度随石墨含量的增加而降低,随石墨颗粒尺寸的细化而增大.  相似文献   

15.
针对风力发电机组摩擦材料对性能的要求,在不同的温度下,成功制备出了SiC颗粒增强的AZ91镁合金基复合材料,并且对其拉伸性能进行研究.结果表明,SiCp/AZ91复合材料的抗拉强度高于AZ91基体镁合金;在同样的烧结温度下,直径较小的SiC颗粒对复合材料的抗拉强度提高幅度较大.  相似文献   

16.
采用机械搅拌与高能超声处理法制备了纳米SiCp增强AZ91D镁基复合材料(n-SiCp/AZ91D),研究了n-SiCp含量及温度对材料摩擦磨损性能的影响.结果表明,AZ91D镁合金中加入n-SiCp能够改善材料的耐磨损性能,并随着n-SiCp添加量的增加,耐磨损性逐渐增加.基体和复合材料在室温至300 ℃范围内,经历了从轻微摩擦磨损到严重磨损的转变.复合材料从轻微摩擦磨损到严重磨损的转变温度比基体提高了50℃,另外,复合材料还表现出较好的耐高温磨损性能.  相似文献   

17.
采用超声波分散法制备了纳米SiCp增强AZ91D复合材料,研究了基体及复合材料在干滑动摩擦情况下的摩擦磨损性能.结果表明,与基体镁合金相比,复合材料的硬度、耐磨性都有显著提高.随着SiCp含量的增加,复合材料的耐磨性也逐渐增强.用激光扫描显微镜对试样的磨痕进行了分析,发现AZ91D的磨损机制以严重的粘着磨损即擦伤磨损为主,而复合材料的磨损机制以磨粒磨损为主,纳米SiCp的加入改变了材料的磨损机制.  相似文献   

18.
王彬  滕新营  神祥博  张文洁  耿浩然 《铸造》2007,56(10):1069-1071,1077
对TiCp增强AZ91复合材料室温下进行拉伸试验时发现,随着复合材料中TiCp含量的增加其断口形貌发生明显变化。认为TiCp的加入,使得复合材料断裂机制发生了转变。当TiCp含量较低时,复合材料的断裂主要由β-Mg17Al12相控制,断口中韧窝明显。随着TiCp含量的增加,断裂机制转变为TiC与α-Mg/β-Mg17Al12脱粘机制即由界面控制,断口中韧窝不再明显。当TiCp含量继续增加,颗粒在基体内逐渐团聚。此时材料的断裂为TiCp团簇控制机制。实验表明,TiCp含量在6%时复合材料的抗拉强度达到最高,对应的断裂机制为界面控制机制。同时随着TiCp含量的增加复合材料硬度增加显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号