首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a direct immunocytochemical technique to identify cytokine and chemokine production in epidermal Langerhans cells (LC) and in vitro derived CD14-, CD1a+, CD83+, CD40+ dendritic cells (DC) at the single cell level. Formaldehyde fixation combined with saponin permeabilization preserved cellular morphology and generated a characteristic juxtanuclear staining signal due to the accumulation of cytokine to the Golgi organelle. This approach was used for the assessment of TNF-alpha, IL-6, IL-8, IL-10, IL-12, GM-CSF, MIP-1alpha, MIP-1beta and RANTES producing cells. In contrast, a diffuse cytoplasmic staining was evident for IL-1ra, IL-1alpha and IL-1beta production. IL-1ra and IL-1alpha were expressed in 10-25% of unstimulated cultured cells, while all the other cytokines were undetectable. IL-1ra, IL-1alpha and IL-1beta were also the dominating cytokines, expressed in up to 85% of the DC, after 3 h of LPS stimulation. A significantly lower number of cells (0-5%) synthesized TNF-alpha, IL-6, IL-10, IL-12 and GM-CSF. The incidence of chemokine producing cells (IL-8, RANTES, MIP-1alpha, MIP-1beta) peaked 10 h after LPS stimulation in up to 60% of the DC. Both immature CD83- and mature CD83+ DC as well as LC had a similar cytokine production pattern. Thus, in comparison to monocytes, LPS stimulation of DC generated a lower incidence of TNF-alpha, IL-6, IL-10 and IL-12 producing cells while IL-1 was expressed in a comparable number of cells.  相似文献   

2.
Recently, it has been shown that the immunosuppressive macrolide lactone, FK506, exerts good therapeutic efficacy in inflammatory skin diseases. The aim of this study was to analyze the influence of topical FK506 on molecular (IL-1alpha, IL-1beta, IL-2, IL-4, IL-12 p35, IL-12 p40, macrophage inflammatory protein-2 (MIP-2), granulocyte-macrophage CSF (GM-CSF), TNF-alpha, and IFN-gamma) and cellular (I-A+/CD80+, I-A+/CD54+, I-A+/CD69+, I-A+/B220+, and CD4+/CD25+) events in epidermal (EC) and local draining lymph node (LNC) cells during primary contact hypersensitivity responses. Cytokine mRNA levels for IL-1alpha, IL-1beta, GM-CSF, TNF-alpha, MIP-2, and IFN-gamma in EC and for IL-2, IL-4, IL-12 p35, IL-12 p40, and IFN-gamma in LNC were increased and resulted in significant LNC proliferation during oxazolone-induced contact hypersensitivity. Topical FK506 treatment dose-dependently suppressed oxazolone-induced LNC proliferation. This effect was correlated with decreased IL-1alpha, IL-1beta, GM-CSF, TNF-alpha, MIP-2, and IFN-gamma mRNA expression within the epidermis and decreased IL-12 p35 and p40 mRNA expression in LNC. Further analysis of the LNC cytokine pattern revealed that the production of both Thl (IFN-gamma and IL-2) and Th2 (IL-4) cytokines was dramatically impaired after topical FK506 treatment. Flow cytometric analysis showed that topical FK506 decreased the population of epidermis-infiltrating CD4+ T cells and suppressed the expression of CD54 and CD80 on I-A+ EC and LNC during hapten-induced contact hypersensitivity. Furthermore, topical FK506 profoundly impaired oxazolone-induced up-regulation of CD25 expression on CD4+ LNC and dramatically decreased hapten-induced expansion of I-A+/B220+ and I-A+/CD69+ LNC subsets. In conclusion, these results give new insights into the mechanisms of action of topical FK506 treatment.  相似文献   

3.
The understanding of immune surveillance and inflammation regulation in cerebral tissue is essential in the therapy of neuroimmunological disorders. We demonstrate here that primary human glial cells were able to produce alpha- and beta-chemokines (IL-8 > growth related protein alpha (GROalpha) > RANTES > microphage inflammatory protein (MIP)-1alpha and MIP-1beta) in parallel to PGs (PGE2 and PGF2alpha) after proinflammatory cytokine stimulation: TNF-alpha + IL-1beta induced all except RANTES, which was induced by TNF-alpha + IFN-gamma. Purified cultures of astrocytes and microglia were also induced by the same combination of cytokines, to produce all these mediators except MIP-1alpha and MIP-1beta, which were produced predominantly by astrocytes. The inhibition of PG production by indomethacin led to a 37-60% increase in RANTES, MIP-1alpha, and MIP-1beta but not in GROalpha and IL-8 secretion. In contrast, inhibition of IL-8 and GRO activities using neutralizing Abs resulted in a specific 6-fold increase in PGE2 but not in PGF2alpha production by stimulated microglial cells and astrocytes, whereas Abs to beta-chemokines had no effect. Thus, the production of PGs in human glial cells down-regulates their beta-chemokine secretion, whereas alpha-chemokine production in these cells controls PG secretion level. These data suggest that under inflammatory conditions, the intraparenchymal production of PGs could control chemotactic gradient of beta-chemokines for an appropriate effector cell recruitment or activation. Conversely, the elevated intracerebral alpha-chemokine levels could reduce PG secretion, preventing the exacerbation of inflammation and neurotoxicity.  相似文献   

4.
Human NK cells have been shown to produce cytokines (e.g., IFN-gamma and TNF-alpha) and the chemokine macrophage inflammatory protein (MIP)-1alpha following stimulation with the combination of two monokines, IL-15 plus IL-12. The C-C chemokines MIP-1alpha, MIP-1beta, and RANTES have been identified as the major soluble macrophage-tropic HIV-1-suppressive factors produced by CD8+ T cells, which exert their action at the level of viral entry. Here, we demonstrate that monokine-activated NK cells, isolated from both normal and HIV-1+ donors, produce similar amounts of MIP-1alpha, MIP-1beta, and RANTES protein, in vitro. Further, supernatants of monokine-activated NK cells obtained from both normal donors and AIDS patients showed potent (routinely > or = 90%) suppressive activity against HIV-1 replication in vitro, compared with unstimulated control supernatants. NK cell supernatants inhibited both macrophage-tropic HIV-1(NFN-SX) and T cell-tropic HIV-1(NL4-3) replication in vitro, but not dual-tropic HIV-1(89.6). Importantly, the C-C chemokines MIP-1alpha, MIP-1beta, and RANTES were responsible only for a fraction of the HIV-1-suppressive activity exhibited by NK cell supernatants against macrophage-tropic HIV-1. Collectively these data indicate that NK cells from normal and HIV-1+ donors produce C-C chemokines and other unidentified factors that can inhibit both macrophage- and T cell-tropic HIV-1 replication in vitro. Since NK cells can be expanded in patients with HIV-1, AIDS, and AIDS malignancy in vivo, this cell type may have an important role in the in vivo regulation of HIV-1 infection.  相似文献   

5.
BACKGROUND & AIMS: Most macrophages in the normal intestinal mucosa have a mature phenotype. In inflammatory bowel disease (IBD), a monocyte-like subset (CD14+ L1+) accumulates. The aim of this study was to characterize its potential with regard to cytokines. METHODS: Lamina propria mononuclear cells were adherence-separated, with or without depletion of CD14+ cells, and production of cytokines was investigated by bioassay, enzyme-linked immunosorbent assay, or immunocytochemistry. RESULTS: Tumor necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), and IL-1 receptor antagonist were found mainly in cells positive for myelomonocytic L1. In undepleted IBD cultures, TNF-alpha, IL-1alpha and beta, and IL-10 were markedly up-regulated by pokeweed mitogen stimulation; IL-1alpha and beta and IL-10 were also up-regulated by stimulation of interferon gamma and lipopolysaccharide in combination. The latter stimulation had no effect on normal control or CD14-depleted IBD cultures. Indomethacin caused a marked increase of TNF-alpha, particularly in undepleted IBD cultures, whereas IL-10 and IL-4 decreased TNF-alpha and IL-1beta in both CD14+ and CD14 macrophages. CONCLUSIONS: In IBD mucosa, macrophages with a monocyte-like phenotype are primed for production of TNF-alpha and IL-1alpha/beta and may therefore be of significant pathogenic importance [corrected]. However, this CD14+ subset, as well as the mucosal resident macrophages, have preserved responsiveness to several down-regulatory factors such as the macrophage deactivators IL-10 and IL-4.  相似文献   

6.
The development of dendritic cells (DC) is still only partly understood. Recently established culture systems using CD34+ cells or monocytes as precursor cells for the generation of DC indicate the necessity of pro-inflammatory cytokines for their development. In vivo the contact to other cells or to the proteins of the extracellular matrix might also be essential for their development. In our experiments we used granulocyte-macrophage colony-stimulating factor- and IL-4-treated human monocytes as precursor cells to investigate the interaction of DC at different maturation stages with the matrix proteins fibronectin, collagen type I and collagen type IV. We demonstrate a strong beta1-integrin-mediated adherence of immature DC to fibronectin that is lost completely during maturation. The binding to collagen type I was less strong but induced a maturation of the precursor cells. After 3 days of culture on this protein, the cells showed all features of fully matured DC such as expression of CD83 and an excellent allostimulatory capacity. The reason for this effect was shown to be the induction of TNF-alpha production by the DC themselves. In contrast to the adhesion to fibronectin, the maturation and the cytokine production of DC induced by collagen type I could not be inhibited by blocking of beta1-integrins. These results indicate that proteins of the extracellular matrix play an important role in the development and function of human DC.  相似文献   

7.
Interleukin-1 (IL-1) and tumor necrosis factor (TNF), two pleiotropic cytokines produced in inflammatory processes, inhibit bone matrix biosynthesis and stimulate prostanoid formation in osteoblasts. In the present study, the importance of prostaglandin formation in IL-1 and TNF-induced inhibition of osteocalcin and type I collagen formation has been examined. In the human osteoblastic cell line MG-63, IL-1 alpha (10-1000 pg/ml), IL-1 beta (3-300 pg/ml) and TNF-alpha (1-30 ng/ml) stimulated prostaglandin E2 (PGE2) formation and inhibited 1,25(OH)2-vitamin D3-induced osteocalcin biosynthesis as well as basal production of type I collagen. Addition of PGE2 or increasing the endogenous formation of PGE2 by treating the cells with arachidonic acid, bradykinin, Lys-bradykinin or des-Arg9-bradykinin, did not affect osteocalcin and type I collagen formation in unstimulated or 1,25(OH)2-vitamin D3-stimulated osteoblasts. Four non-steroidal antiinflammatory drugs, indomethacin, flurbiprofen, naproxen and meclofenamic acid, inhibited basal, IL-1 beta- and TNF-alpha-stimulated PGE2 formation in the MG-63 cells without affecting IL-1 beta- or TNF-alpha-induced inhibition of osteocalcin and type I collagen formation. In isolated, non-transformed, human osteoblast-like cells, IL-1 beta and TNF-alpha stimulated PGE2 formation and concomitantly inhibited 1,25(OH)2-vitamin D3-stimulated osteocalcin biosynthesis, without affecting type I collagen formation. In these cells, indomethacin and flurbiprofen abolished the effects of IL-1 beta and TNF-alpha on prostaglandin formation without affecting the inhibitory effects of the cytokines on osteocalcin biosynthesis. These data show that IL-1 and TNF inhibit osteocalcin and type I collagen formation in osteoblasts independently of prostaglandin biosynthesis and that non-steroidal antiinflammatory drugs do not affect the effects of IL-1 and TNF on bone matrix biosynthesis.  相似文献   

8.
BACKGROUND: Wound strength is a balance between collagen synthesis and degradation. The role of collagen breakdown in wound healing is still not well understood. We investigated the role of collagenases (metalloproteinases [MMPs]) in wound healing in using GM6001, a novel inhibitor of MMPs. METHODS: We used the dorsal skin incision model with implantation of polyvinyl alcohol sponges. Twenty male Sprague-Dawley rats were randomly assigned to receive either GM6001 (10 mg/kg body weight) or 2 mL saline subcutaneously. Ten days after operation the animals were killed and fresh wound breaking strength, scar and sponge hydroxyproline content, and collagen type I gene expression in sponges were assayed. In addition, the inflammatory response and the wound fluid cytokine (tumor necrosis factor-alpha [TNF-alpha] and transforming growth factor-beta 1 [TGF-beta 1]) profile were studied. RESULTS: GM6001 significantly increased wound strength (422 +/- 59 vs 302 +/- 33 g, P < .05), whereas scar collagen content did not differ. In the sponge granulomas the inflammatory infiltrate, the collagen content, and the collagen type I gene expression were all significantly decreased by GM6001. CONCLUSIONS: Inhibition of MMP activity during acute wound healing enhances wound strength even though new collagen synthesis and the inflammatory response are significantly decreased. This could be achieved by decreasing collagen turnover or increasing collagen maturation and crosslinking, or both.  相似文献   

9.
Herpesvirus saimiri (HVS), strain 488-77, was used to derive continuously growing transformed human CD8+ T cell lines that can suppress HIV replication in CD4+ cells via the production of an antiviral factor(s). Transformed CD8+ cell lines were obtained by HVS infection of peripheral blood mononuclear cells or purified CD8- T cells from HIV-infected or uninfected individuals. Suppression of primary or laboratory isolates of HIV was mediated by factor permeation of a transwell membrane or by cell-free culture supernatants. Suppressing and nonsuppressing cell lines were IL-2-dependent for good growth and showed a similar activated cell surface phenotype. The cell lines produced varying amounts of the cytokines IL-8, IL-10, TNF-alpha, TNF-beta, RANTES, MIP-1 alpha, and MIP-1 beta, but not IFN-alpha. No correlation was observed between the level of any of these cytokines and the presence or absence of antiviral activity in cell line culture supernatants. These cell lines have become an important resource for studying antiviral factors produced by CD8+ T cells from HIV-infected individuals.  相似文献   

10.
Multiple sclerosis (MS) is presumed to be a T-cell mediated chronic inflammatory disease of the central nervous system. Investigators previously demonstrated increased IFN-gamma (pro-inflammatory) and IL-10 (counterregulatory anti-inflammatory) in MS. The balance of pro-inflammatory and counterregulatory anti-inflammatory cytokines may be important in the stabilization of disease activity. Purified CD4+ and CD8+ T cells from patients with clinically definite, stable relapsing MS (RRMS) were stimulated by anti-CD3 mAb or Con A for 48 hours and cytokine supernatants analysed for production of IL-2, IL-6, IFN-gamma, TNF-alpha (potential pro-inflammatory) and IL-4, IL-10, and TGF-beta (potential counterregulatory anti-inflammatory). Con A activated CD4+ and CD8+ T cell proinflammatory cytokine IL-2 secretion, CD4+ T cell IL-6 secretion, CD4+ and CD8+ T cell TNF-alpha secretion and CD8+ T cell IFN-gamma secretion was decreased significantly in RRMS subjects compared to controls. CD3 activated CD4+ and CD8+ T cell IL-6 secretion and CD4+ T cell TNF-alpha secretion was significantly decreased in MS subjects compared to controls. In contrast, there was increased CD3-induced IFN-gamma in both CD4+ and CD8+ T cells and counterregulatory anti-inflammatory CD3-induced IL-10 secretion in CD4+ T cells in RRMS compared to controls. These data suggest that an equilibrium of a pro-inflammatory (IFN-gamma) and a counterregulatory anti-inflammatory (IL-10) cytokine may define stable clinically definite early RRMS.  相似文献   

11.
Interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha) induce a motogenic response in a number of benign and malignant cells. We examined the chemokinetic effects of these cytokines on the cell migration of four melanoma cell lines on fibronectin using modified Boyden chambers and video-time lapse analysis. Flow cytometry analysis of IL-1 receptors, TNF receptors, and shifts in beta 1 integrin expression were correlated with the effects of these cytokines on cell migration on fibronectin. The four melanoma cell lines exhibited heterogeneous expression of types I and II IL-1 receptors as well as p60 TNF receptors. Scant p80 TNF receptor expression was detected on only one cell line. Three of four melanoma cell lines demonstrated type I IL-1 receptors by Western blotting. IL-1 alpha and TNF-alpha induced heterogeneous modulation of beta 1 integrin expression in the four melanoma cell lines tested; downward shift of the alpha 2, alpha 3, alpha 4, and beta 1 integrin subunits was detected among three of the melanoma cell lines as were upward shifts of the alpha 4, alpha 5, and alpha 6 integrin subunits among three of the melanoma cell lines. IL-1 alpha and TNF-alpha induced enhanced migration on fibronectin in one of the melanoma cell lines and were related to an upward shift in the alpha 4 and alpha 5 integrin subunit expression. Taken together, the findings indicate that expression of a particular receptor for IL-1 or TNF does not necessarily signal a motogenic response in melanoma cells, but induces heterogeneous shifts in beta 1 integrin expression. However, upregulation in alpha 4 and alpha 5 integrin subunits appears to relate to enhanced migration on fibronectin.  相似文献   

12.
BACKGROUND: Tumour necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine found in abundance in diseased intestine. AIMS: The T cell production of TNF-alpha and the impact of this cytokine on intestinal T cell proliferation, migration, and cytotoxicity were studied. METHODS: Intestinal lymphocytes from normal jejunum were used. TNF-alpha production in culture supernates was measured by enzyme linked immunosorbent assay (ELISA). Lymphocyte proliferation was measured using 3H thymidine uptake; migration, using transwell chambers; and cytotoxicity of HT-29 colon cancer cells, using the chromium-51 release assay. RESULTS: TNF-alpha was produced mainly by the CD8+ T cells in the intraepithelial lymphocytes (IEL) and the CD4+ T cells in the lamina propria lymphocytes in response to CD2 stimulation: 478 (94) and 782 (136) pg/ml, respectively. TNF-alpha (1 ng/ml or greater) augmented proliferation of IEL in response to interleukin 2 (IL-2), IL-7, or antibody to CD3 due to increased activation that did not involve IL-2 production or receptor generation. Conversely, antibody to TNF-alpha reduced IEL proliferation in response to IL-2 or IL-7. TNF-alpha also induced calcium mobilisation and chemokinesis (by 2.8 (0.5) fold over spontaneous migration). TNF-alpha had no effect on lymphokine activated killer cell activity. CONCLUSIONS: TNF-alpha increases the proliferation and migration of IEL, which may expand their number in the epithelium.  相似文献   

13.
Parapneumonic pleural effusions are associated with the presence of a variety of inflammatory cells whose influx into the pleural space is attributed to the presence of inflammatory cytokines. Macrophage inflammatory protein-1alpha (MIP-1alpha), an important mononuclear chemokine, plays a critical role in pulmonary parenchymal inflammatory disease, but its role in the recruitment and activation of mononuclear phagocytes in the pleural space is unknown. In this study we demonstrate that complicated parapneumonic pleural effusions (empyema) and uncomplicated parapneumonic pleural effusions contain significantly (P < .001) higher levels of MIP-1alpha with higher numbers of mononuclear cells when compared with effusions resulting from malignancy and congestive heart failure. The MIP- 1alpha was biologically active and contributed 43% and 37% of the mononuclear chemotactic activity of complicated and uncomplicated parapneumonic pleural fluids, respectively. In vitro, human mesothelial cells, when stimulated with interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), or bacterial lipopolysaccharide (LPS), produced MIP-1alpha. Northern blot analysis confirmed that both endogenous (IL-1beta or TNF-alpha) and exogenous (LPS) factors induce MIP-1alpha expression in mesothelial cells. Supernatants from activated mesothelial cells demonstrated chemotactic activity for mononuclear cells. This activity was blocked by MIP-1alpha antibody, indicating that the MIP-1alpha released was biologically active. We conclude that in parapneumonic pleural effusions, MIP-1alpha plays a major but not exclusive role in the recruitment of mononuclear leukocytes from the vascular compartment to the pleural space, and pleural mesothelial cells by production of MIP-1alpha actively participate in this process.  相似文献   

14.
Polymicrobial sepsis induced by cecal ligation and puncture (CLP) reproduces many of the pathophysiologic features of septic shock. In this study, we demonstrate that mRNA for a broad range of pro- and anti-inflammatory cytokine and chemokine genes are temporally regulated after CLP in the lung and liver. We also assessed whether prophylactic administration of monophosphoryl lipid A (MPL), a nontoxic derivative of lipopolysaccharide (LPS) that induces endotoxin tolerance and attenuates the sepsis syndrome in mice after CLP, would alter tissue-specific gene expression post-CLP. Levels of pulmonary interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-alpha), granulocyte colony-stimulating factor (G-CSF), IL-1 receptor antagonist (IL-1ra), and IL-10 mRNA, as well as hepatic IL-1beta, IL-6, gamma interferon (IFN-gamma), G-CSF, inducible nitric oxide synthase, and IL-10 mRNA, were reduced in MPL-pretreated mice after CLP compared to control mice. Chemokine mRNA expression was also profoundly mitigated in MPL-pretreated mice after CLP. Specifically, levels of pulmonary and hepatic macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 (MCP-1) mRNA, as well as hepatic IFN-gamma-inducible protein 10 and KC mRNA, were attenuated in MPL-pretreated mice after CLP. Attenuated levels of IL-6, TNF-alpha, MCP-1, MIP-1alpha, and MIP-2 in serum also were observed in MPL-pretreated mice after CLP. Diminished pulmonary chemokine mRNA production was associated with reduced neutrophil margination and pulmonary myeloperoxidase activity. These data suggest that prophylactic administration of MPL mitigates the sepsis syndrome by reducing chemokine production and the recruitment of inflammatory cells into tissues, thereby attenuating the production of proinflammatory cytokines.  相似文献   

15.
Increase Th2 cytokine production may contribute to some clinical manifestations of HIV infection, and studies have suggested that IL-13 rather than IL-4 is involved in these conditions. We directly tested this hypothesis by administrating IL-13 to SIV-infected macaques. SIV-infected rhesus macaques received a daily subcutaneous injection for 21 days of either IL-13 (10 microg/kg/day) or a placebo. The four macaques treated with IL-13 experienced body weight loss (9.95 +/- 0.71%) related to intestinal tract damage: they all suffered from a complete atrophy of duodenal villi. This was presumably due to premature epithelial cell death: proliferating Ki67+ cells in glandular crypts were as numerous as in control animals, but many epithelial cells developed apoptosis. The duodenal mucosa was infiltrated with cells expressing CD56 and PEN5, two markers of NK cells, and there was a deregulation of local cytokine and chemokine production characterized by a decrease in IL-10 gene expression (25% of controls) and an increase in gene expression for IFN-gamma (4-fold control), MIP-1alpha (8-fold control), and MIP-1beta (13-fold control). Thus, IL-13 can induce digestive epithelial cell injury in vivo in primates infected with a retrovirus. Therefore, its role should be considered in digestive manifestations of HIV infection as well as in other disorders associated with intestinal epithelial atrophy.  相似文献   

16.
Severe combined immunodeficient (scid) mice lack functional CD4+ lymphocytes, and therefore develop life-threatening Pneumocystis carinii infection. However, when scid mice are immunologically reconstituted with spleen cells, including CD4+ cells, a protective inflammatory response is mounted against the organism. To determine whether these lymphocytes induce elevated cytokine mRNA levels in response to P. carinii infection, steady-state levels of cytokine mRNAs were measured in the lungs of both reconstituted and unaltered scid mice. Despite significant numbers of organisms and the presence of functional alveolar macrophages in the lungs of 8- and 10-wk-old scid mice, there was neither evidence of pulmonary inflammation, nor increased proinflammatory cytokine expression. However, when 8-wk-old scid mice were immunologically reconstituted, signs of intense, focal pulmonary inflammation were observed, and levels of interleukin (IL)-1alpha, IL-1beta, IL-3, IL-6, interferon-gamma (IFN-gamma), tumor necrosis factor (TNF)-alpha, and TNF-beta mRNAs were all significantly elevated. Cytokine expression was increased at day 10 post-reconstitution (PR), maximal at day 12 PR, and returned to baseline by day 22 PR. In situ hybridization demonstrated that at day 12 PR, increased IL-1beta and TNF-alpha expression was localized to sites of intense inflammation and focal P. carinii colonization. Many of the cells expressing high levels of IL-1beta and TNF-alpha in these regions were in direct contact with organisms, or contained degraded organisms within their cytoplasm. Thus, even though functional macrophages are present in scid mice, CD4+ T cells are required for proinflammatory cytokine expression, which is associated with the generation of a protective inflammatory response at sites of P. carinii infection.  相似文献   

17.
We examined the functional properties of CK beta-11/MIP-3 beta/ELC, a recently reported CC chemokine that specifically binds to a chemokine receptor, EBI1/BLR2/CCR7. CK beta-11/MIP-3 beta/ELC is distantly related to other CC and CXC chemokines in primary amino acid sequence structure. Recombinant human CK beta-11/MIP-3 beta/ELC expressed from a mammalian cell system showed potent chemotactic activity for T cells and B cells but not for granulocytes and monocytes. An optimal concentration of CK beta-11/MIP-3 beta/ELC attracted most input T cells within 3 h, a chemotactic activity comparable with that of stromal cell derived factor 1 (SDF-1), a highly efficacious CXC chemokine. CK beta-11/MIP-3 beta/ELC equally attracted naive CD45RA+ and memory type CD45RO+ T cells. CK beta-11/MIP-3 beta/ELC also strongly attracted both CD4+ and CD8+ T cells, but the attraction for CD4+ T cells was greater. CK beta-11/MIP-3 beta/ELC was also a more efficacious chemoattractant for B cells than MIP-1 alpha, a known B cell chemoattractant. CK beta-11/MIP-3 beta/ELC induced actin polymerization in lymphocytes, and chemotaxis was completely blocked by pertussis toxin showing its receptor, most likely EBI1/BLR2/CCR7, is coupled to a G(alpha i) protein. CK beta-11/MIP-3 beta/ELC induced calcium mobilization in lymphocytes, which could be desensitized by SDF-1, suggesting possible cross-regulation in their signaling. Human CK beta-11/MIP-3 beta/ELC attracted murine splenocytes suggesting functional conservation of CK beta-11/MIP-3 beta/ELC between human and mouse. The efficacy of chemoattraction by CK beta-11/MIP-3 beta/ELC and tissue expression of its mRNA suggest that CK beta-11/MIP-3 beta/ELC may be important in trafficking of T cells in thymus, and T cell and B cell migration to secondary lymphoid organs.  相似文献   

18.
Recurrent human herpes simplex lesions are infiltrated by macrophages and CD4 and CD8 lymphocytes, which secrete cytokines and chemokines. Vesicle fluid was examined by ELISA for the presence of cytokines and beta (C-C) chemokines. On the first day of the lesion, high concentrations of interleukin (IL)-1beta, and IL-6, moderate concentrations of IL-1alpha and IL-10, and low concentrations of IL-12 and beta chemokines were found; levels of macrophage inflammatory protein (MIP)-1beta were significantly higher than levels of MIP-1alpha and RANTES. At day 3, the concentrations of IL-1beta, IL-6, and MIP-1beta were lower, whereas the levels of IL-10, IL-12, and MIP-1alpha remained similar, and the level of tumor necrosis factor-alpha was now detectable. Herpes simplex virus infection of keratinocytes in vitro stimulated production of beta chemokines followed by IL-12 and then IL-10, IL-1alpha, IL-1beta, and IL-6, indicating a potential role for these events in early recruitment, activation, and interferon-gamma production of CD4 cells in herpetic lesions.  相似文献   

19.
PURPOSE: The purpose of the study was to examine the effect of T-lymphocyte products on human retinal pigment epithelial (HRPE) cell interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) secretion and gene expression. METHODS: HRPE cells were stimulated for 2, 4, 8, or 24 hours with 20% conditioned media (CM) from T-lymphocytes stimulated with CD3 or CD28 monoclonal antibodies (mAbs) or phorbol myristic acid. In some experiments, CM from CD3 mAb-stimulated T-lymphocytes was preincubated with neutralizing anti-(alpha)-tumor necrosis factor (TNF), alpha-interferon-gamma (IFN-gamma), or alpha-interleukin-1 (IL-1) mAb (control) to determine the contributions of each of these cytokines to HRPE chemokine induction by stimulated T-lymphocyte CM. HRPE cells were stimulated for 8 and 24 hours with IL-1 beta (0.2 to 20.0 ng/ml) (positive control), TNF-alpha (0.2 to 20.0 ng/ml) (positive control), IFN-gamma (1 to 1000 U/ml), IFN-gamma + IL-1 beta, IFN-gamma + TNF-alpha. Interleukin-2 (IL-2; 100 ng/ml) alone or in combination with IL-1 beta, TNF-alpha, or IFN-gamma also was tested. Enzyme-linked immunosorbent assay (ELISA) and Northern blot analyses were performed to determine secreted IL-8 and MCP-1 and their steady state mRNA expression, respectively. RESULTS: ELISA showed significant increases in HRPE IL-8 and MCP-1 secretion by CM from T-lymphocytes stimulated with CD3 or CD3 + CD28 mAb. Smaller, but significant, increases in IL-8 and MCP-1 resulted from CM phorbol myristic acid-stimulated T-lymphocytes. CM preincubated with neutralizing alpha-TNF or alpha-IFN-gamma mAb induced significantly less HRPE IL-8 and MCP-1, whereas preincubation of CM with neutralizing alpha-IL-1 mAb failed to inhibit CM-induced IL-8 or MCP-1. Northern blot analysis showed increased HRPE IL-8 and MCP-1 mRNA expression within 2 hours of stimulation and was maintained up to 24 hours. CM from T-lymphocytes stimulated with CD3 mAb or CD3 + CD28 mAb produced the greatest increases in IL-8 and MCP-1 mRNA. IFN-gamma induced dose-dependent increases in HRPE MCP-1, but not IL-8, IFN-gamma potentiated IL-1 beta and TNF-alpha-induced MCP-1 production, but showed little modulation of IL-1 beta and TNF-alpha-induced IL-8 production. IL-2 did not induce HRPE IL-8 or MCP-1, nor did it modulate the effects of the other cytokines. Northern blot analysis confirmed the ELISA results. CONCLUSIONS: T-lymphocyte secretions induce HRPE IL-8 and MCP-1 gene expression and secretion. TNF and IFN-gamma appear to be necessary components of T-lymphocyte CM for the induction of HRPE IL-8 and MCP-1. IFN-gamma alone induces HRPE MCP-1, albeit to a lesser extent than would IL-1 beta or TNF-alpha, and potentiates IL-1 beta- and TNF-alpha-induced HRPE MCP-1. IL-2 does not appear to modulate cytokine-induced HRPE IL-8 or MCP-1.  相似文献   

20.
In bronchial asthma, eosinophils (EOS) adhere to, and migrate across, the lung microvasculature to exert their effector functions in the airways. This study was conducted to determine the effect of cytokines on adhesion molecule expression on human pulmonary microvascular endothelial cells (HPMEC) and the influence of these molecules on EOS adhesion and transmigration in vitro. Unlike ICAM-1 expression (>80% positive cytokine-treated HPMEC by flow cytometry), VCAM-1 expression varied with the cytokine(s) pretreatment; the order of potency was: TNF-alpha + IL-4 (82.2 +/- 4.2% positive cells) > TNF-alpha (41.8 +/- 5.1%) > IL-1beta (20.8 +/- 4.7%). IL-4 alone had no effect on either ICAM-1 or VCAM-1 expression. EOS adhesion to cytokine-treated HPMEC followed the same order as that observed for VCAM-1 expression. Interestingly, EOS migration across cytokine-treated HPMEC varied inversely with VCAM-1 expression on, and EOS adhesion to, HPMEC; IL-1beta (21.2 +/- 1.4% migration) > TNF-alpha (12.6 +/- 2.6%) > TNF-alpha + IL-4 (9.1 +/- 2.0%). EOS adhesion was greatest with TNF-alpha + IL-4-treated HPMEC, was dependent on VCAM-1, and inhibited with anti-alpha4 integrin mAb (67.7 +/- 7.5% inhibition, p < 0.0005). In contrast, the highest EOS migration occurred across IL-1beta-treated HPMEC and was inhibited by anti-beta2 integrin mAb (40.4 +/- 2.5% inhibition, p < 0.005). Viable HPMEC were required for EOS migration but not adhesion. Our results suggest that EOS adhesion and transmigration are differentially regulated by VCAM-1 and ICAM-1 expression and the interaction of these adhesion proteins with their respective counterligands, i.e., alpha4 and beta2 integrins on EOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号