首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Single- and double-stage catalytic preferential CO oxidation (CO-PrOx) over-Fe2O3-promoted CuO–CeO2 in a H2-rich stream has been investigated in this work. The catalyst was prepared by the urea-nitrate combustion method and was characterized by X-ray diffractometer (XRD), X-ray fluorescence (XRF), Brunauer–Emmet–Teller (BET), transmission electron microscope (TEM), and scanning electron microscope (SEM). The catalytic activity tests were carried out in the temperature range of 50–225 °C under atmospheric pressure. The results of the single-stage reaction indicated that complete CO oxidation was obtained when operating at a O2/CO ratio of 1.5, W/F ratio of 0.36 g s/cm3, and at a reaction temperature of 175 °C. At these conditions, H2 consumption in the oxidation was estimated at 58.4%. Applying the same conditions to the double-stage reaction, complete CO oxidation was found and H2 consumption in the oxidation was reduced about 4.9%. When decreasing the double-stage reaction temperature to 150 °C, the results elucidated that CO could be converted to CO2 completely while H2 consumption in the oxidation was further reduced to 33.5%. A temperature blocking 22 factorial design has been used to describe the importance of the factors influencing the catalytic activity. The factorial design was according to the experimental results. When adding CO2 and H2O in feed, reduction of CO conversion for single- and double-stage reaction is obtained due to a blocking of CO2 and H2O at a catalytic active site. Comparing CO conversion obtained when operating with/without CO2 and H2O in feed for single- and double-stage reaction, less reduction is achieved when operating in double-stage reaction.  相似文献   

2.
The rate of Fischer–Tropsch synthesis over an industrial well-characterized Co–Ru/γ-Al2O3 catalyst was studied in a laboratory well mixed, continuous flow, slurry reactor under the conditions relevant to industrial operations as follows: temperature of 200–240 °C, pressure of 20–35 bar, H2/CO feed ratio of 1.0–2.5, gas hourly space velocity of 500–1500 N cm3 gcat− 1 h− 1 and conversions of 10–84% of carbon monoxide and 13–89% of hydrogen. The ranges of partial pressures of CO and H2 have been chosen as 5–15 and 10–25 bar respectively. Five kinetic models are considered: one empirical power law model and four variations of the Langmuir–Hinshelwood–Hougen–Watson representation. All models considered incorporate a strong inhibition due to CO adsorption. The data of this study are fitted fairly well by a simple LHHW form − RH2 + CO = apH20.988pCO0.508 / (1 + bpCO0.508)2 in comparison to fits of the same data by several other representative LHHW rate forms proposed in other works. The apparent activation energy was 94–103 kJ/mol. Kinetic parameters are determined using the genetic algorithm approach (GA), followed by the Levenberg–Marquardt (LM) method to make refined optimization, and are validated by means of statistical analysis. Also, the performance of the catalyst for Fischer–Tropsch synthesis and the hydrocarbon product distributions were investigated under different reaction conditions.  相似文献   

3.
A series of bifunctional Cu–ZnO–ZrO2/H-Y catalysts of different compositions were prepared by coprecipitating sedimentation method and were characterized by surface area and XRD analyses. The catalytic performance in synthesis of tetrahydrofuran was evaluated and optimized in a three-phase slurry batch reactor. The experimental results showed that the appropriate ratio of Cu/ZnO in the hydrogenation catalyst was 50/45, for which the conversion of maleic anhydride (MA) and selectivity of tetrahydrofuran (THF) reached 100% and 46%, respectively, at 50 bar and 493 K after 6 h of operation. Also, according to these results, it was demonstrated that the incorporation of zirconium oxide in the catalyst formulation enhanced the catalytic activity, and tetrahydrofuran selectivity was increased to 55%. Ultimately, it was concluded that the bifunctional catalyst of Cu–ZnO–ZrO2/H-Y was an appropriate catalyst to produce THF from MA with high activity, selectivity and stability.  相似文献   

4.
A series of samples of La–Cr–O– perovskites were designed as catalysts for diesel soot combustion. They were prepared by using co-precipitation method, at ambient temperature using ammonia followed by a hydrothermal treatment (T = 200 °C, P = 20 atm, t = 24 h). All the chromium-containing precursors were then calcined at high temperature to develop the oxide catalyst. Two phase composition 86%LaCrO3–(14%) La2CrO6 or 94%LaCrO3–6%La2O3 were formed depending on the atmosphere of calcination (oxygen or hydrogen respectively) used. Their respective BET surface areas were 1.1 and 6.5 m2 g−1. Highly crystalline, pure phase of LaCrO3 and La2CrO6 powders were also prepared, with BET area of 4 and 3 m2 g−1, respectively. The crystalline structure and properties of all samples were characterised by X-ray diffraction (XRD), using Rietveld refinement, and temperature-programmed reduction (TPR) techniques. O2-TPD measurements performed on all samples showed the presence of suprafacial, weakly chemisorbed oxygen only for LaCrO3, which contributes actively to soot combustion. TPR study performed on all catalysts showed that while pure LaCrO3 and La2O3 samples did not reduce, the biphasic catalysts showed the presence of oxygen depletion peaks characteristic of lattice oxygen mobility in the samples at ca. 665 °C. Catalytic combustion of diesel soot was studied over all catalysts. The results showed that pure LaCrO3 exhibited significant catalytic activity which was sensitively affected by the modifier La2CrO6 or La2O3.  相似文献   

5.
In principle, the application of monolithic catalysts to the Fischer–Tropsch synthesis can solve many of the problems related to the classical Fischer–Tropsch reactors, in particular concerning the necessity to operate with short diffusion distances and low pressure drops, preferably according to the ideal plug-flow behavior, while still maintaining a reasonable inventory of catalytic material in the reactor volume.The preparation of prototype cobalt-based catalysts, washcoated onto metallic structured supports with different geometries, is described herein, together with the evaluation of the catalytic properties of such systems in the Fischer–Tropsch synthesis at industrially relevant process conditions (220–235 °C, 20 bar, 2.1  molH2/molCO,  5000 cm3(STP)CO+H2/h/gcat). Comparative tests with the same catalyst in the powdered form were also carried out at the same process conditions.It was found that the structured catalysts maintained the activity and the selectivity of the original powdered catalyst, provided that the washcoat thickness is sufficiently thin.  相似文献   

6.
The removal of volatile and odorous emissions from pulp and paper industrial processes usually generates secondary pollution which is treated further by scrubbing, adsorption, and catalytic incineration. Studies using a flow reactor packed with 10% vanadia/titania (V2O5/TiO2) catalyst showed complete conversion of dimethyl sulfide (DMS) in the presence of ozone. The molar yields of partial oxidation products were only 10–20%. Small amounts of partial oxidation products, such as and dimethyl sulfone (DMSO2), dimethyl disulfide (DMDS), and dimethyl sulfoxide (DMSO), were also formed. The results of the oxidation of DMS using ozone only, ozone plus catalyst, and oxygen plus catalyst suggest that the combined use of O3 with catalyst is essential for the complete destruction of DMS to CO2 and SO2. A Box-Behnken design was used to determine the factors that have a significant effect on the conversion and selectivity of the products. It was concluded that product selectivity is strongly influenced by temperature, gas hourly space velocity (GHSV), and ozone concentration. The catalysts were characterized using XRD, surface area measurements, and SEM techniques. Time-on-stream studies carried out in a 500 ppmv gas stream held at 150 °C for 6 h, using 2 g of the catalyst, an ozone-to-DMS molar ratio of 0.9, and a GHSV of 37,000 h−1, yielded 99.9% conversion of DMS. A plausible reaction mechanism has been proposed for the oxidation of DMS based on reaction product distribution and possible intermediates formed.  相似文献   

7.
A systematic study was undertaken to investigate the effects of the initial oxidation degree of iron on the bulk phase composition and reduction/carburization behaviors of a Fe–Mn–K/SiO2 catalyst prepared from ferrous sulfate. The catalyst samples were characterized by powder X-ray diffraction (XRD), Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS) and H2 (or CO) temperature-programmed reduction (TPR). The Fischer–Tropsch synthesis (FTS) performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the fresh catalysts are mainly composed of α-Fe2O3 and Fe3O4, and the crystallite size of iron oxides is decreased with the increase of the initial oxidation degree of iron. The catalyst with high content of α-Fe2O3 in its as-prepared state has high content of iron carbides after being reduced in syngas. However, the catalyst with high content of Fe3O4 in its as-prepared state cannot be easily carburized in CO and syngas. FTS reaction study indicates that Fe-05 (Fe3+/Fetotal = 1.0) has the highest CO conversion, whereas Fe-03 (Fe3+/Fetotal = 0.55) has the lowest activity. The catalyst with high CO conversion has a high selectivity to gaseous hydrocarbons (C1–C4) and low selectivity to heavy hydrocarbons (C5+).  相似文献   

8.
Mesoporous H3PW12O40-silica composite catalysts with controllable H3PW12O40 loadings (4.0–65.1%) were prepared by a direct sol–gel–hydrothermal technique in the presence of triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer. Powder X-ray diffraction (XRD) patterns and nitrogen sorption analysis indicate the formation of well-defined mesoporous materials. With H3PW12O40 loading lower than 20%, the materials exhibit larger BET surface area (604.5–753.0 m2 g−1), larger and well-distributed pore size (6.1–8.6 nm), larger pore volume (0.75–1.2 cm3 g−1), and highly dispersed Keggin unit throughout the materials. Raman scattering spectroscopy studies confirm that the primary Keggin structure remained intact after formation of the composites. As a novel kind of reusable solid acid catalyst, as-prepared H3PW12O40-silica composite was applied for the synthesis of diphenolic acid (DPA) from biomass platform molecule, levulinic acid (LA), under solvent-free condition, and remarkably high catalytic activity and stability were observed.  相似文献   

9.
Mesoporous Sn-SBA-15 has been synthesized by three different methods such as conventional hydrothermal route, using cocatalyst NH4F and in the presence of organosilane precursor. All the materials are thoroughly characterized by powder X-ray diffraction (XRD), SEM, TEM, N2 sorption and surface area measurements, diffuse-reflectance UV–visible and FTIR spectroscopy, TG–DTA and elemental analysis through ICP. Nitrogen adsorption data, XRD patterns, and TEM observations suggests that the textural properties are retained during the isomorphous substitution of silicon by tin. ICP chemical analysis indicates that tin can be substituted in the range of Si/Sn = 69–162. UV–visible spectra of samples synthesized by the cocatalytic approach exhibit unique absorption band at 213 nm characteristics of tin atom substituted in the smaller pores (2–3 nm) located inside the walls of mesopores. Further, an additional band at 224 nm can be assigned to Sn atoms located in the distorted tetrahedral position along the primary mesopores. In contrary, only one absorption band centered at 224 nm is observed for all the samples synthesized by conventional hydrothermal as well as in the presence of organosilane precursor. 19F NMR spectra confirmed (no signal) the absence of occluded F ions in the samples made with NH4F. Observed high catalytic activity in Baeyer–Villiger oxidation and Meerwin–Pondorf–Verly reduction under the liquid-phase conditions suggest the incorporation of a portion of tin in the smaller pores for the Sn-SBA-15 materials synthesized through cocatalyst method.  相似文献   

10.
Copper(I) chloride catalysts with a loading of 20 wt%, supported on silica–titania mixed oxides with Si/Ti ratios of 1, 5, 10 and 50 were prepared by conventional and microwave heating methods and tested in the oxidative carbonylation of methanol to dimethyl carbonate (DMC). X-ray diffraction (XRD), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) were used to examine the bulk and surface properties of the CuCl/SiO2–TiO2 catalysts. Quantum-chemical calculations were performed to explore the interaction of CuCl with the silica–titania support. Microwave heating showed some significant advantages over the conventional heating method, with markedly reduced preparation temperature and time, and provided improved catalytic activity in the oxidative carbonylation of methanol. The catalytic behavior of CuCl/SiO2–TiO2 in the test reaction studied was strongly dependent on the support composition. Incorporation of tetrahedral Ti(IV) species into the silica matrix could enhance the interaction of copper species with the oxide support. The improved catalytic performance of CuCl/SiO2–TiO2 in the DMC synthesis can be understood by the existence of the strong coordination interactions between the Cu+ centers of CuCl and the bridging oxygen atoms at the Si–O–Ti bonds in the silica–titania support.  相似文献   

11.
The water–gas shift (WGS) reaction is used to shift the CO/H2 ratio prior to Fischer–Tropsch synthesis and/or to increase H2 yield. A WGS membrane reactor was developed using a mixed protonic–electronic conducting SrCe0.9Eu0.1O3−δ membrane coated on a Ni–SrCeO3−δ support. The membrane reactor overcomes the thermodynamic equilibrium limitations. A 46% increase in CO conversion and total H2 yield was achieved at 900 °C under 3% CO and 6% H2O, resulting in a 92% single pass H2 production yield and 32% single pass yield of pure permeated H2.  相似文献   

12.
At present, graphite (LiC6: 372 mAh g−1, 840 mAh cm−3) is used as the anode material for lithium-ion batteries. However, methods to enhance the energy density, cyclability, initial Coulombic efficiency, and rate capability of lithium-ion batteries are still actively being researched. Here, we report a simple, fast, and novel method for transforming micron-sized Sn and Sb powders into ca. 10 nm- and 2–3 nm-sized SnSb crystallites by mechanochemical synthesis and electrochemical reactions, respectively. These nanocrystallites are uniformly distributed in an amorphous carbon matrix, resulting in a SnSb/C nanocomposite structure. The fabricated SnSb/C nanocomposite showed excellent electrochemical properties, such as a high energy density (1st charge: 706 mAh g−1), long cyclability (ca. 550 mAh g−1 over 300 cycles), good initial Coulombic efficiency (ca. 81%), and a fast rate capability (1C: 590 mAh g−1, 2C: 550 mAh g−1).  相似文献   

13.
Vanadium oxide and cerium oxide doped titania–zirconia mixed oxides were explored for oxidative dehydrogenation of ethylbenzene to styrene utilizing carbon dioxide as a soft oxidant. The investigated TiO2–ZrO2 mixed oxide support with high specific surface area (207 m2 g−1) was synthesized by a coprecipitation method. Over the calcined support (550 °C), a monolayer equivalent (15 wt.%) of V2O5, CeO2 or a combination of both were deposited by using wet-impregnation or co-impregnation methods to make the V2O5/TiO2–ZrO2, CeO2/TiO2–ZrO2 and V2O5–CeO2/TiO2–ZrO2 combination catalysts, respectively. These catalysts were characterized using X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature preprogrammed reduction (TPR), CO2 temperature preprogrammed desorption (TPD) and BET surface area methods. All characterization studies revealed that the deposited promoter oxides are in a highly dispersed form over the support, and the combined acid–base and redox properties of the catalysts play a major role in this reaction. The V2O5–CeO2/TiO2–ZrO2 catalyst exhibited a better conversion and product selectivity than other combinations. In particular, the addition of CeO2 to V2O5/TiO2–ZrO2 prevented catalyst deactivation and helped to maintain a high and stable catalytic activity.  相似文献   

14.
The Pt–Sn/Al2O3 catalysts with 0.3 wt% Pt and 0.5–1.5 wt% Sn loading were prepared by one-step flame spray pyrolysis (FSP). Unlike the catalysts prepared by conventional impregnation method, the FSP-derived catalysts were composed of single-crystalline γ-alumina particles with the as-prepared primary particle size of 10–18 nm and contained only large pores. The FSP catalysts exhibited superior catalytic activity and better stability than the ones made by impregnation in the dehydrogenation of propane, while they did not alter the selectivity to propylene (in all cases, propylene selectivity ≥96%). The presence of large pores in the flame-made catalysts not only facilitated diffusion of the reactants and products but could also lessen the amount of carbon deposited during reactions. As revealed by CO chemisorption, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), the metal particles appeared to be partially covered by the alumina matrix (Al–O) due to the simultaneous formation of particles during FSP synthesis. Such phenomena, however, were shown to result in the formation of active Pt–Sn ensembles for propane dehydrogenation as shown by higher turnover frequencies (TOFs).  相似文献   

15.
Proton conductive inorganic–organic hybrid membranes were synthesized from styrene derivatives of alkoxysilane and ethyl 2-[3-(dihydroxyphosphonyl)-2-oxopropyl] acrylate (EPA) through copolymerization followed by sol–gel reaction. Self-standing, homogeneous and transparent hybrid membranes with chemically bound phosphonic acid groups were synthesized. FT-IR analysis exhibited the hybrid membranes included phosphonic acid groups. 13C and 29Si NMR studies indicated that alkoxysilyl functionalized styrene derivatives were not only copolymerized with EPA but also condensed yielding Si–O–Si linkages by sol–gel reaction. TG–DTA analysis revealed that these membranes were thermally stable up to 200 °C in dry O2. The proton conductivities of the hybrid membranes increased with phosphonic acid content and temperature. The P/Si ratio of the membrane was dependent on the number of alkoxy group in the starting alkoxysilane. The hybrid membrane from (dimethylmethoxysilylmethyl)styrene (DMMSMS(M))/EPA = 1/6 revealed proton conductivities of 6.3 × 10−3 and 2.4 × 10−4 S cm−1 at 68.0% relative humidity and 18.8% relative humidity, respectively, at 140 °C.  相似文献   

16.
A series of Cu–Zn–Zr catalysts were prepared by a coprecipitation method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, and N2 adsorption. The catalytic activity of the Cu–Zn–Zr catalyst in the hydrogenation of maleic anhydride using ethanol as a solvent was studied at 220–280 °C and 1 MPa. Maleic anhydride was mainly hydrogenated to γ-butyrolactone and tetrahydrofuran while ethanol dehydrogenated to ethyl acetate. After reduction, CuO species present in the calcined Cu–Zn–Zr catalysts were converted to metallic copper (Cu0). The presence of ZrO2 favored the deep hydrogenation of γ-butyrolactone to tetrahydrofuran while the presence of ZnO was beneficial to the formation of the intermediate product γ-butyrolactone. The molar ratios of the hydrogen produced in ethanol dehydrogenation to the hydrogen consumed in maleic anhydride hydrogenation increased with the increase of the reaction temperature.  相似文献   

17.
A series of precipitated Fe/Mn Fischer–Tropsch synthesis (FTS) catalysts incorporated with calcium promoter were prepared by the combination of co-precipitation and spray-drying technology. The catalysts were characterized by using N2 physisorption, CO2 temperature-programmed desorption and Mössbauer spectroscopy methods. FTS performances of the catalysts were tested in a 1 dm3 continuous stirred tank reactor. It is found that calcium promoter has negligible effect on the textural properties, and the addition of calcium promoter can enhance the surface basicity of the catalyst. An appropriate amount of calcium promoter can promote the reduction and carburization of the catalysts during the reduction and Fischer–Tropsch synthesis (FTS) reaction in syngas, but the excessive addition of calcium promoter will decrease the extent of reduction and carburization. The reaction results indicated that the activities of both FTS and water-gas shift (WGS) decrease with the incorporation of calcium promoter. Calcium promoter can inhibit the hydrogenation ability, suppress the formation of methane, and enhance the selectivities to olefin and higher molecular weight products.  相似文献   

18.
Te-free and Te-containing Mo–V–Nb mixed oxide catalysts were diluted with several metal oxides (SiO2, γ-Al2O3, α-Al2O3, Nb2O5, or ZrO2), characterized, and tested in the oxidation of ethane and propane. Bulk and diluted Mo–V–Nb–Te catalysts exhibited high selectivity to ethylene (up to 96%) at ethane conversions <10%, whereas the corresponding Te-free catalysts exhibited lower selectivity to ethylene. The selectivity to ethylene decreased with the ethane conversion, with this effect depending strongly on the diluter and the catalyst composition. For propane oxidation, the presence of diluter exerted a negative effect on catalytic performance (decreasing the formation of acrylic acid), and α-Al2O3 can be considered only a relatively efficient diluter. The higher or lower interaction between diluter and active-phase precursors, promoting or hindering an unfavorable formation of the active and selective crystalline phase [i.e., Te2M20O57 (M = Mo, V, and Nb)], determines the catalytic performance of these materials.  相似文献   

19.
The use of high specific surface area (>10 cm2 cm–3) reticulated current collectors in lead–acid batteries was studied by cyclic voltammetry, 2 V battery testing and scanning electron microscopy (SEM). Comparative cyclic voltammetry experiments revealed differences in the electrochemical behaviour of reticulated and book-mould current collector designs, with regard to both PbSO4 and PbO2 film formation. Battery testing showed that the electrochemical utilization efficiency of the positive active material (PAM) in flooded cells equipped with about 10 pores cm–1 reticulated collectors was between 30 and 50% higher than for the book-mould grid battery at discharge rates from 5 to 3 h. For instance, at the 3 h rate the PAM utilization efficiency was 45% and the capacity was 101 Ah (kg PAM)–1 for reticulated collectors as opposed to 29.5% and 66 Ah (kg PAM)–1, respectively, for a battery equipped with conventional grids. The results were attributed to differences in PAM morphology as shown by SEM micrographs.  相似文献   

20.
Zhihui Zhu  Dehua He   《Fuel》2008,87(10-11):2229-2235
CeO2–TiO2 (Ce:Ti = 0.25–9, molar ratio) catalysts were synthesized by a sol–gel method and the catalytic performances were evaluated in the selective synthesis of isobutene and isobutane from CO hydrogenation under the reaction conditions of 673–748 K, 1–5 MPa and 720–3000 h−1. The physical properties, such as specific surface area, cumulative pore volume, average pore diameter, crystal phase and size, of the catalysts were characterized by N2 adsorption/desorption and XRD. All the CeO2–TiO2 composite oxides showed higher surface areas than pure TiO2 and CeO2. No TiO2 phase was detected on the samples of CeO2–TiO2 in which TiO2 contents were in the range of 10–50 mol%. Crystalline Ce2O3 was detected in CeO2–TiO2 (8:2). The reaction conditions, temperature, pressure and space velocity, had obvious influences on the CO conversion and distribution of the products over CeO2–TiO2 (8:2) catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号