首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors--in contrast to p75NTR-associated signaling--stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

2.
We expressed the high affinity nerve growth factor receptor TrkA in Chinese hamster ovary (CHO) fibroblasts to study nerve growth factor (NGF) trafficking and processing events following receptor-mediated ligand internalization in a nonneuronal and p75 minus cell line. These stable clonal cell lines express approximately 2.5 x 10(5) TrkA receptors and bind 125I-NGF with high affinity (Kd = 4 x 10(-10) M). The TrkA receptors are autophosphorylated on tyrosine residues upon NGF stimulation and are capable of tyrosine phosphorylating downstream signaling molecules. The t1/2 of 125I-NGF internalization is 5 min, and the probability of an occupied TrkA receptor internalizing within 1 min at 37 C is 9.8%. By 2 h following endocytosis, less than 10% of internalized 125I-NGF is degraded, as determined by TCA precipitation. Thirty minutes following ligand endocytosis, endocytosed 125I-NGF is delivered back to the cell surface and released by the cell (retroendocytosis), possibly by remaining associated with recycling TrkA receptors. We measured the effect of acidification on 125I-NGF-TrkA association and found that, at pH 6, 40% of 125I-NGF remains bound. Thus, NGF may remain associated with the TrkA receptor at low pH conditions in the endosome and can thereby be targeted back to the plasma membrane for release by the cell. In conclusion: 1) TrkA, in the absence of p75, is fully capable of mediating 125I-NGF endocytosis; 2) internalized 125I-NGF is slowly and inefficiently degraded; 3) following internalization, 125I-NGF is retroendocytosed; and 4) the ability of 125I-NGF to remain receptor-associated during acidic conditions may provide a mechanism for its retroendocytosis via recycling TrkA vesicles.  相似文献   

3.
Nerve growth factor (NGF) binds to two cell surface receptors, p140trk and p75NGFR, which are both expressed in responsive sensory, sympathetic, and basal forebrain cholinergic neurons. While p140trk belongs to the family of receptor tyrosine kinases, p75NGFR is a member of the TNF/Fas/CD40/CD30 family of receptors. Current views of neurotrophin receptor function have tended to interpret p140trk as the high affinity NGF-binding site. To assess if the binding of NGF to p140trk was distinguishable from binding to high affinity sites on neuronal cells, PC12 cell sublines were generated which expressed p140trk alone, or coexpressed both p140trk and p75NGFR. Kinetic analysis of 125I-NGF binding indicates that it has an unusually slow rate of association with p140trk (k + 1 = 8 x 10(5) M-1 s-1). When both p140trk and p75NGFR receptors are coexpressed, the rate of association of NGF is increased 25-fold to produce a higher affinity binding site. An increase in the rate of internalization was also observed. Since high affinity binding and internalization are believed to be prerequisite for the biological activities of NGF, these results suggest that the biological effects by NGF are derived from a novel kinetic binding site that requires the expression of both receptors. The implications of these results with respect to multisubunit polypeptide receptors are discussed.  相似文献   

4.
Septal cholinergic neurones depend on trophic support by nerve growth factor (NGF) which can rescue them from injury-induced degeneration. Since NGF exerts its effects via p75NTR and TrkA receptors coexpressed in vast majority of these neurones and down-regulated without NGF treatment after injury, in this study we aimed to examine how does the lesion to the cholinergic tracts affect distribution of both types of receptor proteins in damaged fibres. Early changes (two and seven days) were examined immunocytochemically within the septum and supracallosal stria after unilateral lesion to the supracallosal area and cingulum transecting some septal cholinergic efferents. We found accumulation of p75NTR and TrkA immunoreactive material (so-called "pile-up") within axonal segments of distended appearance proximal to the transection at two days postlesion and its translocation towards cell bodies seven days postsurgery. We observed p75NTR pile-up to be more intense than TrkA, which may indicate different cellular concentrations of both receptors. Receptor pile-up resembled acetylcholinesterase pile-up reported previously, suggesting a common response mechanism involving axonal transport disturbances.  相似文献   

5.
Neurotrophins play an essential role in sensory development by providing trophic support to neurons that innervate peripheral targets. Nerve growth factor (NGF), neurotrophin-3, neurotrophin-4, and brain-derived neurotrophin exert their survival effect by binding to two transmembrane receptor types: trk receptors, which exhibit binding specificity, and the p75NTR receptor, which binds all neurotrophins. To determine how target-derived neurotrophins affect sensory neuron development and function, we used transgenic mice that overexpress NGF in the skin to examine the impact of NGF overexpression on receptor expression. Previous studies of trk expression in trigeminal ganglia of adult NGF transgenics showed that the percentage of trkA neurons doubled and their number increased fivefold. The present study focused on the p75 receptor and shows that the percentage of neurons expressing p75NTR also increase in NGF ganglia, but only by 10%. This increase did not encompass the small, BS-IB-4 isolectin-positive cells as they remained p75 negative in transgenic ganglia. Interestingly, levels of trkA protein were not increased on a per-cell level, whereas levels of p75NTR increased nearly threefold. These results show that in sensory systems, target-derived NGF modulates the level of p75NTR receptor expression, and in so doing, may act to regulate the formation of functional receptor complexes and subsequent trophic action.  相似文献   

6.
Neurotrophins signal through Trk tyrosine kinase receptors and the low-affinity neurotrophin receptor p75(NTR). We have shown previously that activation of Trk A tyrosine kinase activity can inhibit p75(NTR)-dependent sphingomyelin hydrolysis, that caveolae are a localized site for p75(NTR) signaling, and that caveolin can directly interact with p75(NTR). The ability of caveolin to also interact with tyrosine kinase receptors and inhibit their activity led us to hypothesize that caveolin expression may modulate interactions between neurotrophin signaling pathways. PC12 cells were transfected with caveolin that was expressed efficiently and targeted to the appropriate membrane domains. Upon exposure to nerve growth factor (NGF), caveolin-PC12 cells were unable to develop extensive neuritic processes. Caveolin expression in PC12 cells was found to diminish the magnitude and duration of Trk A activation in vivo. This inhibition may be due to a direct interaction of caveolin with Trk A, because Trk A co-immunoprecipitated with caveolin from Cav-Trk A-PC12 cells, and a glutathione S-transferase-caveolin fusion protein bound to Trk A and inhibited NGF-induced autophosphorylation in vitro. Furthermore, the in vivo kinetics of the inhibition of Trk A tyrosine kinase activity by caveolin expression correlated with an increased ability of NGF to induce sphingomyelin hydrolysis through p75(NTR). In summary, our results suggest that the interaction of caveolin with neurotrophin receptors may have functional consequences in regulating signaling through p75(NTR) and Trk A in neuronal and glial cell populations.  相似文献   

7.
We have characterized some of the nerve growth factor (NGF) stimulated receptor tyrosine kinase (TrkA) signalling cascades in adult rat primary dorsal root ganglia (DRG) neuronal cultures and compared the pathways with those found in PC12 cells. TrkA receptors were phosphorylated on tyrosine residues in response to NGF in DRG neuronal cultures. We also saw phosphorylation of phospholipase Cgamma1 (PLCgamma1). We used recombinant glutathione-S-transferase (GST)-PLCgamma1 SH2 domain fusion proteins to study the site of interaction of TrkA receptors with PLCgamma1. TrkA receptors derived from DRG neuronal cultures bound preferentially to the amino terminal Src homology-2 (SH2) domain of PLCgamma1, but there was enhanced binding with tandemly expressed amino- and carboxy-terminal SH2 domains. The most significant difference in NGF signalling between PC12 cells and DRG was with the Shc family of adapter proteins. Both ShcA and ShcC were expressed in DRG neurons but only ShcA was detected in PC12 cells. Different isoforms of ShcA were phosphorylated in response to NGF in DRG and PC12 cells. NGF phosphorylated only one whereas epidermal growth factor phosphorylated both isoforms of ShcC in DRG cultures. Activation of the downstream mitogen-activated protein (MAP) kinase, p42Erk2 was significantly greater than p44Erk1 in DRG whereas both isoforms were activated in PC12 cells. Blocking the MAP kinase cascade using a MEK1/2 inhibitor, PD98059, abrogated NGF dependent capsaicin sensitivity, a nociceptive property specific to sensory neurons.  相似文献   

8.
Nerve growth factor (NGF) is a neurotrophin that induces neuritogenic and trophic signals by binding to TrkA and/or p75 receptors. We report a comparative study of the binding, internalization, and biological activity of NGF versus that of NGF in association with an anti-NGF monoclonal antibody (mAb NGF30), directed against the C termini of NGF. NGF.mAb complexes do not bind p75 effectively but bind TrkA with high affinity. After binding, NGF. mAb complexes stimulate internalization faster and to a larger degree than NGF. NGF.mAb-induced activation of TrkA, Shc, and MAPK is transient compared with NGF-induced activation; yet NGF and NGF. mAb afford identical trophic responses. In contrast, NGF induces Suc-1-associated neurotrophic activating protein phosphorylation and neuritogenic differentiation, but NGF.mAb does not. Thus, an absolute separation of trophic and neuritogenic function is seen for NGF.mAb, suggesting that biological response modifiers of neurotrophins can afford ligands with selected activities.  相似文献   

9.
The role of the nerve growth factor (NGF) carboxyl terminus in the function of NGF is not well understood. Previous work showed that deletion of residues 112-120 abolished NGF bioactivity. Several mutagenesis studies, however, have localized the binding sites of the two NGF receptors, p75 and TrkA, to other regions of the NGF molecule. To investigate the role of the NGF COOH terminus, we performed a detailed structure-function analysis of this region by deleting stepwise each of the nine COOH-terminal residues as well as constructing six point mutants. We found that point mutations within the 111-115 region, but not deletion of residues 116-120, significantly decreased NGF bioactivity, as determined by TrkA tyrosine phosphorylation and neurite outgrowth from PC12 cells. Mutation of the absolutely conserved Leu112 led to severely disrupted p75 binding on A875 cells but had only a modest effect on TrkA binding to MG87-TrkA fibroblasts. This suggests that the p75 binding surface is more extended than previously believed and includes not only charged residues within loops 1 and 5 but also spatially discontinuous, uncharged residues in a region where the NH2 and COOH termini are in close proximity. Unexpectedly, deletion of COOH-terminal residues beyond Ala116 led to significantly decreased stability. These results demonstrate that residues 111-115, but not residues 116-120, are important for both the structural stability and biological activity of NGF.  相似文献   

10.
11.
A role for Zn2+ in a variety of neurological conditions such as stroke, epilepsy and Alzheimer's disease has been postulated. In many instances, susceptible neurons are located in regions rich in Zn2+ where nerve growth factor (NGF) levels rise as a result of insult. Although the interaction of Zn2+ with this neurotrophin has previously been suggested, the direct actions of the ion on NGF function have not been explored. Molecular modeling studies predict that Zn2+ binding to NGF will induce structural changes within domains of this neurotrophin that participate in the recognition of TrkA and p75NTR. We demonstrate here that Zn2+ alters the conformation of NGF, rendering it unable to bind to p75NTR or TrkA receptors or to activate signal transduction pathways and biological outcomes normally induced by this protein. Similar actions of Zn2+ are also observed with other members of the NGF family, suggesting a modulatory role for this metal ion in neurotrophin function.  相似文献   

12.
Nerve growth factor (NGF) receptors of rabbit superior cervical ganglia can be solubilized by treatment with detergents and readily assayed in the soluble state. Triton X-100 and deoxycholate reduce specific binding of NGF to ganglia membranes. In membranes treated with Triton X-100 (0.5 to 2.0%) the reduction in NGF binding by membranes is accompanied by a corresponding increase in binding in the supernatant fluid. NGF binding in soluble preparations can be rapidly assayed by precipitating NGF bound to receptors with polyethylene glycol under conditions in which unbound NGF is not precipitated. NGF binding to soluble preparations is saturable whether evaluated by the binding of 125I-NGF or by diluting 125I-NGF with native NGF. Using both techniques, the dissociation constant for NGF binding to soluble receptors is about 0.2 nM, the same as its dissociation constant from receptor sites in intact membranes. NGF binding to soluble receptors displays a high degree of peptide specificity, similar to receptor sites in intact membranes of superior cervical ganglia. A method of labeling NGF with 125I-3(4-hydroxyphenyl) propionic acid N-hydroxysuccinimide ester is described which leads to binding properties that are superior to those obtained with previously described 125I-NGF preparations.  相似文献   

13.
Nerve growth factor (NGF) is the prototype of a family of neurotrophins that support important neuronal programs such as differentiation and survival of a subset of sympathetic, sensory, and brain neurons. NGF binds to two classes of cell surface receptors: p75LANR and p140TrkA. NGF binding to p140TrkA initiates the neuronal signaling pathway through activation of the tyrosine kinase activity, which subsequently results in a rapid signal transduction through a phosphorylation cascade. To examine this crucial signaling step in more detail, the TrkA extracellular domain polypeptide (TrkA-RED) was overexpressed in Sf21 insect cells and purified to homogeneity. The recombinant TrkA-RED is a 70 kDa acidic glycoprotein with a pI of 5.1, and mimics the intact TrkA receptor for NGF binding with a dissociation constant, Kd, of 2.9 nM. Thus, the recombinant TrkA-RED is functionally competent and can be used to elucidate the interaction of NGF and TrkA receptor. Circular dichroism difference spectra indicated that, upon association of NGF with TrkA-RED, a minor conformational change occurred to form a complex with decreased ordered secondary structure. Interaction between NGF and TrkA-RED was also demonstrated by size exclusion chromatography, light scattering, and chemical crosslinking with evidence for formation of a higher molecular weight complex consistent with a (TrkA-RED)2-(NGF dimer) complex. Association and dissociation rates of 5.6 x 10(5) M(-1) s(-1) and 1.6 x 10(-3) s(-1), respectively, were determined by biosensor technology. Thus, initiation of signaling may stem from NGF-induced receptor dimerization concomitant with a small conformational change.  相似文献   

14.
Nerve growth factor (NGF) initiates its biological effects by promoting the dimerization and activation of the tyrosine kinase receptor TrkA. The requirements for NGF signaling through the TrkA receptor have been defined extensively from studies in immortalized cells, involving transfection of NIH 3T3, COS, and PC12 cells. In the present study, we tested the effects of extracellular and intracellular mutations of TrkA after DNA-mediated transfection in primary cultures of embryonic day 17 hippocampal neurons. We found that the action of the TrkA receptor on neuronal differentiation depends on specific motifs in the extracellular domain and on tyrosine 490 (Y490), the site for SHC protein binding. In contrast with previous observations in a PC12 background, a mutation in the SHC Y490 binding site in TrkA resulted in a loss of NGF-dependent process formation. These results indicate that tyrosine 490 is necessary for neurite outgrowth in hippocampal neurons. Moreover, a constitutively active form of TrkA did not give enhanced responsiveness in hippocampal neurons, indicating that the behavior of TrkA receptors in primary neuronal cells is distinct from that of other cell types.  相似文献   

15.
It has been recently shown that intraventricular injections of nerve growth factor (NGF) prevent the effects of monocular deprivation in the rat. We have tested the localization and the molecular nature of the NGF receptor(s) responsible for this effect by activating cortical trkA receptors in monocularly deprived rats by cortical infusion of a specific agonist of NGF on trkA, the bivalent antirat trkA IgG (RTA-IgG). TrkA protein was detected by immunoblot in the rat visual cortex during the critical period. Rats were monocularly deprived for 1 week (P21-28) and RTA-IgG or control rabbit IgG were delivered by osmotic minipumps. The effects of monocular deprivation on the ocular dominance of visual cortical neurons were assessed by extracellular single cell recordings. We found that the shift towards the ipsilateral, non-deprived eye was largely prevented by RTA-IgG. Infusion of RTA-IgG combined with antibody that blocks p75NTR (REX), slightly reduced RTA-IgG effectiveness in preventing monocular deprivation effects. These results suggest that NGF action in visual cortical plasticity is mediated by cortical TrkA receptors with p75NTR exerting a facilitatory role.  相似文献   

16.
Extracellular signal-regulated protein kinases (ERKs) constitute a family of protein serine-threonine kinases implicated in a variety of cell-signaling pathways. In cultured rat pheochromocytoma PC12 cells, ERK1 and ERK2 are activated by nerve growth factor (NGF), which also induces rapid association between ERK1 and the high affinity gp140prototrk tyrosine kinase NGF receptor. In the present work, we investigated the possible association between ERKs and the low affinity NGF receptor, p75. Extracts of PC12 cells (before and after NGF treatment) were subjected to immunoprecipitation with anti-p75 antibodies or antiserum; the immune complexes were then assessed for the presence of ERK proteins and tyrosine phosphorylation or for ERK activity using a specific substrate peptide. ERK1 and, to a lesser extent, ERK2 were found to be constitutively associated with p75. NGF did not modulate the total amount of ERK proteins coimmunoprecipitated with p75 but did markedly stimulate the level of p75-associated ERK catalytic activity. NGF treatment also enhanced the tyrosine phosphorylation of a p75-associated species that co-migrates with ERK1 in Western blots. Finally, K-252a, a compound that specifically inhibits activation by NGF of gp140prototrk, abolished the latter effect. These findings indicate that NGF, via activation of gp140prototrk, leads to association of enzymatically active ERKs with p75 and raise the possibility that this interaction may play a role in the NGF mechanism of action.  相似文献   

17.
Over the past decade, neurotrophic factors have generated much excitement for their potential as therapy for neurological disorders. In this regard, nerve growth factor (NGF), the founding member of the neurotrophin family, has generated great interest as a potential target for the treatment of Alzheimer's disease (AD). This interest is based on the observation that cholinergic basal forebrain (CBF) neurons which provide the major source of cholinergic innervation to the cerebral cortex and hippocampus undergo selective and severe degeneration in advanced AD and that these neurons are dependent upon NGF and its receptors for their survival. In fact, NGF transduces its effects by binding two classes of cell surface receptors, TrkA and p75(NTR), both of which are produced by CBF neurons. This review focuses on NGF/receptor binding, signal transduction, regulation of specific cellular endpoints, and the potential use of NGF in AD. Alterations in NGF ligand and receptor expression at different stages of AD are summarized. Recent results suggest that cognitive deficits in early AD and mild cognitive impairment (MCI) are not associated with a cholinergic deficit. Thus, the earliest cognitive deficits in AD may involve brain changes other than simply cholinergic system dysfunction. Recent findings indicate an early defect in NGF receptor expression in CBF neurons; therefore treatments aimed at facilitating NGF actions may prove highly beneficial in counteracting the cholinergic dysfunction found in end-stage AD and attenuating the rate of degeneration of these cholinergic neurons.  相似文献   

18.
To clarify the role of the common neurotrophin receptor p75 in modulating the survival response of sensory and sympathetic neurons to NGF at different stages of development, we compared the actions of wild-type NGF with a mutated NGF protein that binds normally to TrkA, the NGF receptor tyrosine kinase, but has greatly reduced binding to p75. At saturating concentrations, the NGF mutant promoted the survival of similar numbers of trigeminal sensory and sympathetic neurons as NGF. At subsaturating concentrations, the NGF mutant was less effective than wild-type NGF in promoting the survival of embryonic sensory neurons and postnatal sympathetic neurons but was equally effective as wild-type NGF in promoting the survival of embryonic sympathetic neurons. Whereas the levels of trkA and p75 were similar in embryonic sensory neurons and postnatal sympathetic neurons, the level of p75 was significantly lower than that of trkA in embryonic sympathetic neurons. These results indicate that binding of NGF to p75 enhances the sensitivity of NGF-dependent neurons to NGF at stages in their development when the levels of p75 and TrkA are similar.  相似文献   

19.
In addition to its role as a survival factor, nerve growth factor (NGF) has been implicated in initiating apoptosis in restricted cell types both during development and after terminal cell differentiation. NGF binds to the TrkA tyrosine kinase and the p75 neurotrophin receptor, a member of the tumor necrosis factor cytokine family. To understand the mechanisms underlying survival versus death decisions, the TrkA receptor was introduced into oligodendrocyte cell cultures that undergo apoptosis in a p75-dependent manner. Here we report that activation of the TrkA NGF receptor in oligodendrocytes negates cell death by the p75 receptor. TrkA-mediated rescue from apoptosis correlated with mitogen-activated protein kinase activation. Concurrently, activation of TrkA in oligodendrocytes resulted in suppression of c-jun kinase activity initiated by p75, whereas induction of NFkappaB activity by p75 was unaffected. These results indicate that TrkA-mediated rescue involves not only activation of survival signals but also simultaneous suppression of a death signal by p75. The selective interplay between tyrosine kinase and cytokine receptors provides a novel mechanism that achieves alternative cellular responses by merging signals from different ligand-receptor systems.  相似文献   

20.
GM1 enhances nerve growth factor (NGF)-stimulated neuritogenesis and prevents apoptotic death of PC12 cells; both may be due to enhancement of TrkA dimerization. In this study, we examined the effect of GM1 on NGF-induced TrkA dimerization in Trk-PC12 (6-24) cells. NGF increased tyrosine phosphorylation of the 140-kDa protein (TrkA monomer), and preincubation with GM1 potentiated this effect. Adding the protein cross-linker bis(sulfosuccinimidyl) suberate with NGF resulted in the appearance of two major bands (220 and 330 kDa) when probed with antibodies against TrkA or phosphotyrosine, and GM1 also enhanced this effect. We interpret the 330-kDa band as being a homodimer of TrkA. The identity of the 220-kDa band is still not certain but may consist of a posttranslationally modified form of TrkA. Our results suggest that GM1 is augmenting the effects of NGF on PC12 cells by enhancing the dimerization and activation of the TrkA receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号