首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonlinearity of the soil medium plays a very important role on the seismic behavior of soil-pile-structure interaction. The problem of soil-pile-structure interaction is further complicated when the piles are embedded in liquefiable soil medium. A finite-element code was developed in MATLAB to model three-dimensional soil-pile-structure systems. Frequency dependent Kelvin elements (spring and dashpots) were used to model the radiation boundary conditions. A work-hardening plastic cap model was used for constitutive modeling of the soil medium. The pore pressure generation for liquefaction was incorporated by a two-parameter volume change model reported in the literature. In this paper, a 2×2 pile group in liquefiable soil is considered and a parametric study is conducted to investigate its seismic behavior. The effects of loading intensity and stiffness of the soil on the seismic behaviour of the soil-pile system are investigated, considering nonlinearity and liquefaction of the soil medium for a wide range of frequencies of harmonic excitations. The inertial interaction attributable to a structure is analyzed for a system consisting of a four-storied portal frame on the pile group-soil subsystem. The responses of the structure are investigated for harmonic excitation and transient excitations. The importance of consideration of nonlinearity and liquefaction of the soil medium for analysis and design of a pile-supported structure is highlighted. Results from an analysis considering a practical soil-pile problem are presented to demonstrate the applicability of the developed algorithm for a practical problem.  相似文献   

2.
This paper presents a kinematic analysis of a single pile embedded in a laterally spreading layered soil profile and discusses the relevancy of conventional analysis models to this load case. The research encompasses the creation of three-dimensional (3D) finite-element (FE) models using the OpenSees FE analysis platform. These models consider a single pile embedded in a layered soil continuum. Three reinforced concrete pile designs are considered. The piles are modeled using beam-column elements and fiber-section models. The soil continuum is modeled using brick elements and a Drucker-Prager constitutive model. The soil-pile interface is modeled using beam-solid contact elements. The FE models are used to evaluate the response of the soil-pile system to lateral spreading and two alternative lateral load cases. Through the computation of force density-displacement (p-y) curves representative of the soil response, the FE analysis (FEA) results are used to evaluate the adequacy of conventional p-y curve relationships in modeling lateral spreading. It is determined that traditional p-y curves are unsuitable for use in analyses where large pile deformations occur at depth.  相似文献   

3.
Pile Responses Caused by Tunneling   总被引:2,自引:0,他引:2  
In this paper, a two-stage approach is used to analyze the lateral and axial responses of piles caused by tunneling. First, free-field soil movements are estimated based on an analytical method, and, second, these estimated soil movements are imposed on the pile in simplified boundary element analyses to compute the pile responses. Through a parametric study, it is shown that the influence of tunneling on pile response depends on a number of factors, including tunnel geometry, ground loss ratio, soil strength, pile diameter, and ratio of pile length to tunnel cover depth. Simple design charts are presented for estimating maximum pile responses and may be used in practice to assess the behavior of existing piles adjacent to tunneling operations. A published case history has been studied in which the measured lateral pile deflections are compared with those computed using the present method and fair agreement is found.  相似文献   

4.
Soil movements associated with slope instability induce shear forces and bending moments in stabilizing piles that vary with the buildup of passive pile resistance. For such free-field lateral soil movements, stress development along the pile element is a function of the relative displacement between the soil and the pile. To investigate the effects of relative soil-pile displacement on pile response, large-scale load tests were performed on relatively slender, drilled, composite pile elements (cementitious grout with centered steel reinforcing bar). The piles were installed through a shear box into stable soil and then loaded by lateral translation of the shear box. The load tests included two pile diameters (nominal 115 and 178?mm) and three cohesive soil types (loess, glacial till, and weathered shale). Instrumentation indicated the relative soil-pile displacements and the pile response to the loads that developed along the piles. Using the experimental results, an analysis approach was evaluated using soil p-y curves derived from laboratory undrained shear strength tests. The test piles and analyses helped characterize behavioral stages of the composite pile elements at loads up to pile section failure and also provided a unique dataset to evaluate the lateral response analysis method for its applicability to slender piles.  相似文献   

5.
This paper demonstrates the application of the strain wedge (SW) model to assess the response of laterally loaded isolated long piles, drilled shafts, and pile groups in layered soil (sand and/or clay) and rock deposits. The basic goal of this paper is to illustrate the capabilities of the SW model versus other procedures and approaches. The SW model has been validated and verified through several comparison studies with model- and full-scale lateral load tests. Several factors and features related to the problem of a laterally loaded isolated pile and pile group are covered by the SW model. For example, the nonlinear behavior of both soil and pile material, the soil-pile interaction (i.e., the assessment of the p-y curves rather than the adoption of empirical ones), the potential of soil to liquefy, the interference among neighboring piles in a pile group, and the pile cap contribution are considered in SW model analysis. The SW model analyzes the response of laterally loaded piles based on pile properties (pile stiffness, cross-sectional shape, pile-head conditions, etc.) as well as soil properties. The SW model has the capability of assessing the response of a laterally loaded pile group in layered soil based on more realistic assumptions of pile interference as compared to techniques and procedures currently employed or proposed.  相似文献   

6.
Soil-pile interaction remains to be the most ambiguous yet one of the most crucial aspects in the design of laterally loaded soil-pile systems subjected to embankment-induced movements. This paper proposes a new method that is capable of producing soil stiffness degradation curves, which are the outcome of real field behavior through free-field measurements. Soil-pile interaction mechanism can be solved with the proposed method for any possible case either the piles are constructed before the embankment construction or during and after. For any time considered, the method enables the computation of resultant stress effects on the pile cross section and the accompanying deflections. To provide a basis of comparison, an example problem has been solved with the proposed method and with two well-known commercial finite-element softwares. Obtained results indicated the capability of the proposed method to disclose real field behavior, which can be attributed to its inherent property of being also an observational method.  相似文献   

7.
Traditionally, analyses developed for circular piles have also been used for rectangular piles by replacing in calculations the rectangular pile with a circular pile of equivalent area. In this paper, we present a settlement analysis that applies to piles with either rectangular or circular cross sections installed in multilayered soil deposits. The analysis follows from the solution of the differential equations governing the displacements of the pile-soil system obtained using variational principles. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. Pile displacements and vertical soil displacements calculated using this analysis match well those from finite-element analysis. A parametric study highlights some important insights for rectangular and circular piles in multilayered soil. A user-friendly spreadsheet program (ALPAXL) was developed to facilitate the use of the analysis. Examples illustrate the use of the analysis in design.  相似文献   

8.
This paper presents an assessment of the potential of using the p–y analysis method for single piles and pile groups subjected to lateral spreading. The computed responses were compared with the results from the full-scale lateral spreading tests in Japan as presented in the Part I companion paper. The responses of the single piles subjected to lateral spreading were determined by imposing the known free-field soil movement profile to the Winkler spring model. The soil springs of nonliquefied soils used in this study were based upon standard p–y springs whereas zero spring stiffness was used for liquefied soils. For the case of pile groups, they were modeled as an equivalent single pile with a rotational spring at the pile head to simulate effect of pile head restraint. A decrease of soil spring stiffnesses using the p-multiplier approach was used to account for pile group effects. Based on the results of analyses, the computed responses of all sets of the test piles using a single set of baseline soil properties were in good agreement with the measured responses. These results suggest that the p–y analysis method may be used to estimate the behavior of piles subjected to lateral spreading.  相似文献   

9.
Assessment of the response of a laterally loaded pile group based on soil–pile interaction is presented in this paper. The behavior of a pile group in uniform and layered soil (sand and/or clay) is evaluated based on the strain wedge model approach that was developed to analyze the response of a long flexible pile under lateral loading. Accordingly, the pile’s response is characterized in terms of three-dimensional soil–pile interaction which is then transformed into its one-dimensional beam on elastic foundation equivalent and the associated parameter (modulus of subgrade reaction Es) variation along pile length. The interaction among the piles in a group is determined based on the geometry and interaction of the mobilized passive wedges of soil in front of the piles in association with the pile spacing. The overlap of shear zones among the piles in the group varies along the length of the pile and changes from one soil layer to another in the soil profile. Also, the interaction among the piles grows with the increase in lateral loading, and the increasing depth and fan angles of the developing wedges. The value of Es so determined accounts for the additional strains (i.e., stresses) in the adjacent soil due to pile interaction within the group. Based on the approach presented, the p–y curve for different piles in the pile group can be determined. The reduction in the resistance of the individual piles in the group compared to the isolated pile is governed by soil and pile properties, level of loading, and pile spacing.  相似文献   

10.
Centrifuge Model Study of Laterally Loaded Pile Groups in Clay   总被引:3,自引:0,他引:3  
A series of centrifuge model tests has been conducted to examine the behavior of laterally loaded pile groups in normally consolidated and overconsolidated kaolin clay. The pile groups have a symmetrical plan layout consisting of 2, 2×2, 2×3, 3×3, and 4×4 piles with a center-to-center spacing of three or five times the pile width. The piles are connected by a solid aluminum pile cap placed just above the ground level. The pile load test results are expressed in terms of lateral load–pile head displacement response of the pile group, load experienced by individual piles in the group, and bending moment profile along individual pile shafts. It is established that the pile group efficiency reduces significantly with increasing number of piles in a group. The tests also reveal the shadowing effect phenomenon in which the front piles experience larger load and bending moment than that of the trailing piles. The shadowing effect is most significant for the lead row piles and considerably less significant for subsequent rows of trailing piles. The approach adopted by many researchers of taking the average performance of piles in the same row is found to be inappropriate for the middle rows, of piles for large pile groups as the outer piles in the row carry significantly more load and experience considerably higher bending moment than those of the inner piles.  相似文献   

11.
Seismic Behavior of Batter Piles: Elastic Response   总被引:1,自引:0,他引:1  
Several aspects of the seismic response of groups containing nonvertical piles are studied, including the lateral pile-head stiffnesses, the “kinematic” pile deformation, and the “inertial” soil-pile-structure response. A key goal is to explore the conditions under which the presence of batter piles is beneficial, indifferent, or detrimental. Parametric analyses are carried out using three-dimensional finite-element modeling, assuming elastic behavior of soil, piles, and superstructure. The model is first used to obtain the lateral stiffnesses of single batter piles and to show that its results converge to the available solutions from the literature. Then, real accelerograms covering a broad range of frequency characteristics are employed as base excitation of simple fixed-head two-pile group configurations, embedded in homogeneous, inhomogeneous, and layered soil profiles, while supporting very tall or very short structures. Five pile inclinations are considered while the corresponding vertical-pile group results serve as reference. It is found that in purely kinematic seismic loading, batter piles tend to confirm their negative reputation, as had also been found recently for a group subjected to static horizontal ground deformation. However, the total (kinematic plus inertial) response of structural systems founded on groups of batter piles offers many reasons for optimism. Batter piles may indeed be beneficial (or detrimental) depending on, among other parameters, the relative size of the overturning moment versus the shear force transmitted onto them from the superstructure.  相似文献   

12.
Centrifuge model tests have been conducted on free-head and capped-head pile groups consisting of two, four, and six piles located adjacent to an unstrutted deep excavation in sand. It is found that when two free- or capped-head piles are arranged in a row parallel to the retaining wall, the interaction effect between piles is insignificant. When two piles are arranged in a line perpendicular to the wall, the existence of a front pile would reduce the detrimental effect of excavation-induced soiled movement on the rear pile. In addition, the provision of a pile cap for two piles arranged in a line would exert a significant influence on the behavior of the pile group. For free-head four- or six-pile groups, the induced bending moment decreases as the number of piles increases. Moreover, the interior piles of the pile group always experience lower bending moments than those of peripheral piles as the latter have more exposure to the excavation-induced soil movement and are thus more adversely affected. For the capped-head four- or six-pile groups, it can be established that the provision of a pile cap would help to moderate the pile-group deflection against soil movement as the rear piles, that are located farther away from the wall and thus less affected by the soil movement, would drag the front piles back.  相似文献   

13.
The characteristic load method (CLM) can be used to estimate lateral deflections and maximum bending moments in single fixed-head piles under lateral load. However, this approach is limited to cases where the lateral load on the pile top is applied at the ground surface. When the pile top is embedded, as in most piles that are capped, the additional embedment results in an increased lateral resistance. A simple approach to account for embedment effects in the CLM is presented for single fixed-head piles. In practice, fixed-head piles are more typically used in groups where the response of an individual pile can be influenced through the adjacent soil by the response of other nearby piles. This pile–soil–pile interaction results in larger deflections and moments in pile groups for the same load per pile compared to single piles. A simplified procedure to estimate group deflections and moments was also developed based on the p-multiplier approach. Group amplification factors are introduced to amplify the single pile deflection and bending moment to reflect pile–soil–pile interaction. The resulting approach lends itself well to simple spreadsheet computations and provides good agreement with other generally accepted analytical tools and with values measured in published lateral load tests on groups of fixed-head piles.  相似文献   

14.
The principal objective of this study is the development and calibration of a macroelement model for soil-pile interaction under simultaneously applied lateral and vertical loads. Herein, we focus on cast-in-drilled-hole single piles that are partially or fully embedded in soil, which are frequently used as support structures in highway construction. The model is calibrated and verified using primarily three-dimensional finite-element simulations and, whenever possible, with experimental data obtained from open literature. These data indicate that lateral loads significantly affect the vertical response of single piles, whereas the converse coupling is negligible. The proposed macroelement model is capable of mimicking this phenomenon. As such, it is a computationally efficient alternative to finite-element analyses, and is feasible to be utilized in practical applications.  相似文献   

15.
Development of Downdrag on Piles and Pile Groups in Consolidating Soil   总被引:1,自引:0,他引:1  
Development of pile settlement (downdrag) of piles constructed in consolidating soil may lead to serious pile foundation design problems. The investigation of downdrag has attracted far less attention than the study of dragload over the years. In this paper, several series of two-dimensional axisymmetric and three-dimensional numerical parametric analyses were conducted to study the behavior of single piles and piles in 3×3 and 5×5 pile groups in consolidating soil. Both elastic no-slip and elasto-plastic slip at the pile–soil interface were considered. For a single pile, the downdrag computed from the no-slip elastic analysis and from the analytical elastic solution was about 8–14 times larger than that computed from the elasto-plastic slip analysis. The softer the consolidating clay, the greater the difference between the no-slip elastic and the elasto-plastic slip analyses. For the 5×5 pile group at 2.5 diameter spacing, the maximum downdrag of the center, inner, and corner piles was, respectively, 63, 68, and 79% of the maximum downdrag of the single pile. The reduction of downdrag inside the pile group is attributed to the shielding effects on the inner piles by the outer piles. The relative reduction in downdrag (Wr) in the 5×5 pile group increases with an increase in the relative bearing stiffness ratio (Eb/Ec), depending on the pile location in the group. Compared with the relative reduction in dragload (Pr), Wr at the corner pile is less affected by the group interaction for a given surcharge load. This suggests that the use of sacrificing piles outside the pile group will be more effective on Pr than on Wr. Based on the three cases studied, the larger the number of piles in a group, the greater the shielding effects on Wr. Relatively speaking, Wr is more sensitive to the total number of piles than to the pile spacing within a pile group.  相似文献   

16.
This paper presents test results from cast-in situ reinforced concrete single and group piles subjected to strong horizontal excitation. The tests were conducted for different eccentric moments simulating different excitation levels to obtain the frequency-amplitude response of the pile. Moderate nonlinear behavior is observed in both horizontal and rocking components of vibration. The experimental results were compared with dynamic interaction factor approach using nonlinear solutions. The accuracy of the nonlinear analysis in predicting the dynamic response depends on the choice of parameters that best characterize the response of boundary zone around the pile and the realistic length of pile separation. It is shown in this study that by allowing for boundary zone and separation between pile and soil, close agreement between theoretical predictions and measured response curves can be achieved.  相似文献   

17.
Simplified Approach for the Seismic Response of a Pile Foundation   总被引:1,自引:0,他引:1  
Pseudostatic approaches for the seismic analysis of pile foundations are attractive for practicing engineers because they are simple when compared to difficult and more complex dynamic analyses. To evaluate the internal response of piles subjected to earthquake loading, a simplified approach based on the “p-y” subgrade reaction method has been developed. The method involves two main steps: first, a site response analysis is carried out to obtain the free-field ground displacements along the pile. Next, a static load analysis is carried out for the pile, subjected to the computed free-field ground displacements and the static loading at the pile head. A pseudostatic push over analysis is adopted to simulate the behavior of piles subjected to both lateral soil movements and static loadings at the pile head. The single pile or the pile group interact with the surrounding soil by means of hyperbolic p-y curves. The solution derived first for the single pile, was extended to the case of a pile group by empirical multipliers, which account for reduced resistance and stiffness due to pile-soil-pile interaction. Numerical results obtained by the proposed simplified approach were compared with experimental and numerical results reported in literature. It has been shown that this procedure can be used successfully for determining the response of a pile foundation to “inertial” loading caused by the lateral forces imposed on the superstructure and “kinematic” loading caused by the ground movements developed during an earthquake.  相似文献   

18.
A series of centrifuge model tests was conducted to investigate the behavior of pile groups of various sizes and configurations behind a retaining wall in very soft clay. With a 1.2-m excavation in front of the wall, which may simulate the initial stage of an excavation prior to strutting, the test results reveal that the induced bending moment on an individual pile in a free-head pile group is always smaller than that on a corresponding single pile located at the same distance behind the wall. This is attributed to the shadowing and reinforcing effects of other piles within the group. The degree of shadowing experienced by a pile depends on its relative position in the pile group. With a capped-head pile group, the individual piles are forced to interact in unison though subjected to different magnitudes of soil movement. Thus, despite being subjected to a larger soil movement, the induced bending moment on the front piles is moderated by the rear piles through the pile cap. A finite element program developed at the National University of Singapore is employed to back-analyze the centrifuge test data. The program gives a reasonably good prediction of the induced pile bending moments provided an appropriate modification factor is applied for the free-field soil movement and the amount of restraint provided by the pile cap is properly accounted for. The modification factor applied to the free-field soil movement accounts the reinforcing effect of the piles on the soil movement.  相似文献   

19.
Cellular structures constructed of interlocking steel sheet piles are used in marine environments as cofferdams, bulkheads, mooring dolphins, and lock guide walls. In addition to providing safety against sliding, bearing failure, overturning, and tilting, cellular structures must also be designed to prevent sheet pile interlock rupture, which can lead to catastrophic failure if the cell fill is lost. Methods commonly used to estimate sheet pile interlock tensions were developed in the 1940’s, 1950’s, and 1970’s. These methods are based on empirical observations, and they do not explicitly account for soil–structure interactions. This paper presents the results of finite element analyses and instrumentation measurements performed to examine soil–structure interaction effects on sheet pile tensions. The finite-element analyses were used to compute sheet pile tensions at five instrumented cells, and the results are compared with measurements. The calibrated finite-element model was then used to investigate the effects of varying cell geometry, interlock behavior, sheet pile penetration depth, and foundation stiffness on sheet pile tensions. The instrumentation measurements provide data for estimating changes in sheet pile tensions due to cell fill densification, cofferdam unwatering, and bulkhead backfilling.  相似文献   

20.
Load Testing of a Closed-Ended Pipe Pile Driven in Multilayered Soil   总被引:2,自引:0,他引:2  
Piles are often driven in multilayered soil profiles. The accurate prediction of the ultimate bearing capacity of piles driven in mixed soil is more challenging than that of piles driven in either clay or sand because the mechanical behavior of these soils is better known. In order to study the behavior of closed-ended pipe piles driven into multilayered soil profiles, fully instrumented static and dynamic axial load tests were performed on three piles. One of these piles was tested dynamically and statically. A second pile served as reaction pile in the static load test and was tested dynamically. A third pile was tested dynamically. The base of each pile was embedded slightly in a very dense nonplastic silt layer overlying a clay layer. In this paper, results of these pile load tests are presented, and the lessons learned from the interpretation of the test data are discussed. A comparison is made of the ultimate base and limit shaft resistances measured in the pile load tests with corresponding values predicted from in situ test-based and soil property-based design methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号