首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The impulse response test is a nondestructive evaluation technique commonly used for quality control of driven concrete piles and drilled shafts where the pile heads are accessible. When evaluating existing foundations, the presence of a pile cap or other structure makes the pile heads inaccessible and introduces uncertainties in the interpretation of impulse response results. A test section was constructed at the National Geotechnical Experimentation Site (NGES) at Northwestern University to examine the applicability of nondestructive testing methods in evaluating deep foundations under inaccessible-head conditions. This paper focuses on the results of impulse response tests conducted atop the three pile caps at the NGES. Based on field experimentation and numerical simulations, a frequency was determined below which the impulse response test could be used for inaccessible-head conditions. This cutoff frequency primarily depends upon the geometry of the pile cap and pile. A case study is presented that describes impulse response tests obtained on a number of drilled shafts both after the shaft was constructed and after grade beams and walls were built. The results of these tests also follow the trends observed in the NGES tests related to cutoff frequency.  相似文献   

2.
In the United States, an estimated $1 billion is spent annually on repair and replacement of deep foundations. In a recent study, the possibility of using ultrahigh-performance concrete (UHPC) for deep foundation applications was explored with the objectives of increasing the service life of deep foundations supporting bridges to 75 years and reducing maintenance costs. This paper focuses on field evaluation of two UHPC piles and references a steel H-pile. An UHPC pile with an H shape was designed to simplify the process of casting the pile and reduce the volume (i.e., cost) of the material needed to cast the pile. Two instrumented UHPC piles were driven in loess on top of a glacial till clay soil and load tested under vertical and lateral loads. This paper provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. The results presented in this paper prove that the designed UHPC piles can be driven using the same equipment used to drive steel H-piles through hard soil layers without a pile cushion. The vertical load capacity of the UHPC pile was over 80% higher than that of the steel H-piles.  相似文献   

3.
When bored piles are installed through a jet grout layer, significant interaction may take place between the piles and the jet grout. Field load tests have indicated that significant enhancement of the pile shaft capacity and axial stiffness was possible for both compression and tension piles. The influence of the jet grout layer was more pronounced for piles under compression loading compared with uplift loading. The effectiveness of the jet grout in transmitting load via shearing action was dependent on the thickness of the grouted zone, the strength of the interlocks between individual jet grout columns forming the grout slab, as well as the interface bond between the pile shafts and the grout. No apparent adverse effect on the performance of permanent foundations was envisaged as a result of the presence of the jet grout layer. However, interpretation of pile behavior from load tests was complicated by the interaction between the test pile and jet grout, resulting in overprediction of pile capacity and axial stiffness. The significance of the interaction has to be carefully evaluated so that a correct interpretation of the true pile capacity and axial stiffness can be made.  相似文献   

4.
通过室内模型试验,实测得到碎石桩、夯实水泥土桩和CFG桩复合地基桩土荷载分担比、桩土应力比和桩间土深层变形,并对三类不同桩体材料复合地基的承载及变形性状进行了对比分析.认为碎石桩复合地基和夯实水泥土桩复合地基均存在有效桩长或有效复合土层厚度;碎石桩桩长超过有效桩长,对提高复合地基承载力和压缩模量、减小变形效果不明显,除一些特别情况如为处理可液化地基外,设计桩长可适当超过有效桩长,但不宜过长;夯实水泥土桩复合地基的有效桩长与桩身强度相关性显著,应以桩身强度控制进行夯实水泥土桩桩体设计,使按桩身强度确定的单桩承载力大于或等于由桩周土及桩端土的抗力所提供的单桩承载力;CFG桩复合地基桩身强度高,桩体自身压缩性小,可全桩长发挥侧阻作用,当桩端落在好的持力层时,能很好地发挥端阻,提高承载力,减小变形,设计时应优先选择好的桩端持力层进行设计.   相似文献   

5.
The ultimate bearing capacity of short, precast concrete piles driven into calcareous sands was examined by pile-load tests carried out at two sites in Kuwait. The piles had a 0.3 m × 0.3 m square cross section and extended to a maximum depth of 12 m. They were driven through a loose-to-compact calcareous surface sand layer underlain by a competent dense-to-very-dense siliceous cemented sand deposit. The pile tips and part of the pile shafts were embedded in the lower layer. The base resistance and shaft friction were calculated using the Meyerhof method for a layered soil profile. The method employs the standard penetration test N values. The results indicate that a great portion of the pile capacity is due to base resistance. The skin friction mobilized is small and consists of two components corresponding to the two layers penetrated along the pile shafts. The calculated pile capacities were very close to the measured values. The unit skin friction is not constant along the pile shafts.  相似文献   

6.
Most of the current design methods for driven piles were developed for closed-ended pipe piles driven in either pure clay or clean sand. These methods are sometimes used for H piles as well, even though the axial load response of H piles is different from that of pipe piles. Furthermore, in reality, soil profiles often consist of multiple layers of soils that may contain sand, clay, silt or a mixture of these three particle sizes. Therefore, accurate prediction of the ultimate bearing capacity of H piles driven in a mixed soil is very challenging. In addition, although results of well documented load tests on pipe piles are available, the literature contains limited information on the design of H piles. Most of the current design methods for driven piles do not provide specific recommendations for H piles. In order to evaluate the static load response of an H pile, fully instrumented axial load tests were performed on an H pile (HP?310×110) driven into a multilayered soil profile consisting of soils composed of various amounts of clay, silt and sand. The base of the H pile was embedded in a very dense nonplastic silt layer overlying a clay layer. This paper presents the results of the laboratory tests performed to characterize the soil profile and of the pile load tests. It also compares the measured pile resistances with those predicted with soil property- and in situ test-based methods.  相似文献   

7.
Pullout Behavior of Granular Pile-Anchors in Expansive Clay Beds In Situ   总被引:1,自引:0,他引:1  
Granular pile anchors (GPA) are one of the recent innovative foundation techniques devised for mitigating the problems posed by swelling clay beds. In a granular pile anchor, the footing is anchored to an anchor plate at the bottom of the granular pile. This makes the granular pile tension resistant and enables it to absorb the tensile force caused on the foundation by the swelling clay. An understanding of the amount of uplift resistance offered by the GPA is important in the design of granular pile-anchor foundations in field situations causing tensile forces on foundations, such as in expansive clay beds. This paper presents the results of a field-scale test program conducted to study the pullout response of GPAs embedded in expansive clay beds. Pullout load tests were conducted on GPAs of varying lengths and diameters. It was found from the field pullout load tests that granular pile anchors of larger surface area resulted in higher pullout capacity. Of the various single granular pile anchors with l/d values between 2.5 and 10, the GPA of length 1000?mm and diameter 200?mm (l/d = 5) showed the best pullout load response when tested alone, resulting in a failure uplift capacity of 14.71?kN. Increase in diameter and length of granular pile anchor increased the uplift capacity. When the length of the GPA was increased from 500 to 750 and 1000?mm, the percentage increase in the uplift load required for an upward movement of 25?mm was 33.3 and 55.5% respectively. The pullout load of the GPA when tested under group was 18?kN as against a 12?kN for the GPA when tested single.  相似文献   

8.
Contribution to Piled Raft Foundation Design   总被引:1,自引:0,他引:1  
Raft foundations enhanced with deep foundation elements (typically piles), simply known as piled rafts, were examined to develop a more integrated, displacement-based, design methodology. Illustrative piled rafts were analyzed using simplified linear elastic and nonlinear plane strain finite element models. The effects of raft and pile group system geometries and pile group compression capacity were evaluated on the “average” and differential displacements, raft bending moments, and pile butt load ratio of the piled rafts. The results were synthesized into an updated, displacement-based, design methodology for piled rafts.  相似文献   

9.
This paper demonstrates the application of the strain wedge (SW) model to assess the response of laterally loaded isolated long piles, drilled shafts, and pile groups in layered soil (sand and/or clay) and rock deposits. The basic goal of this paper is to illustrate the capabilities of the SW model versus other procedures and approaches. The SW model has been validated and verified through several comparison studies with model- and full-scale lateral load tests. Several factors and features related to the problem of a laterally loaded isolated pile and pile group are covered by the SW model. For example, the nonlinear behavior of both soil and pile material, the soil-pile interaction (i.e., the assessment of the p-y curves rather than the adoption of empirical ones), the potential of soil to liquefy, the interference among neighboring piles in a pile group, and the pile cap contribution are considered in SW model analysis. The SW model analyzes the response of laterally loaded piles based on pile properties (pile stiffness, cross-sectional shape, pile-head conditions, etc.) as well as soil properties. The SW model has the capability of assessing the response of a laterally loaded pile group in layered soil based on more realistic assumptions of pile interference as compared to techniques and procedures currently employed or proposed.  相似文献   

10.
采用西澳大学室内鼓轮式离心机,在预先固结的高岭黏土中开展不同离心力场(50g,125g及250g,g为重力加速度)条件下的模型压桩试验、T-bar试验和静力触探试验,分析了模型桩在贯入过程、静置稳定过程中桩身径向应力(σr)的变化规律,并对后期桩体拉伸载荷阶段的径向应力变化值(Δσr)及桩侧摩阻力变化情况行了探讨,揭示了在不同超固结比(OCRs)黏土中静压桩侧摩阻力的演变特性.在此基础上,通过两种经验公式方法对桩侧摩承载力进行了预测计算和对比分析.研究结果表明:沉桩过程中桩端相对高度(h/B)对桩身径向应力的发展变化有很大的影响,桩身不同位置(h/B)的总径向应力对同一贯入深度而言,存在桩侧径向应力退化现象;基于静力触探试验提出的经验方法,能有效考虑静力触探锥端阻力(qt)和桩端相对高度(h/B)因素的影响,将其应用于黏土沉桩时桩侧摩阻力的预测,可取得与试验实测结果较吻合的结果.研究成果对软土地区静压桩施工与承载力设计具有一定的工程指导意义.   相似文献   

11.
Conventional pile materials such as steel, concrete, and timber are prone to deterioration for many reasons. Fiber-reinforced polymer (FRP) concrete composites represent an alternative construction material for deep foundations that can eliminate many of the performance disadvantages of traditional piling materials. However, FRP composites present several difficulties related to constructability, and the lack of design tools for their implementation as a foundation element. This paper describes the results of an experimental study on frictional FRP/dense sand interface characteristics and the constructability of FRP–concrete composite piles. An innovative toe driving technique is developed to install the empty FRP shells in the soil and self-consolidating concrete is subsequently cast in them. The experimental program involves interface shear tests on small FRP samples and uplift load tests on large-scale model piles. Two different FRP pile materials with different roughness and a reference steel pile are examined. Static uplift load tests are conducted on different piles installed in soil samples subjected to different confining pressures in the pressure chamber. The results showed that the interface friction for FRP materials compared favorably with conventional steel material. It was shown that toe driving is suitable for installation of FRP piles in dense soils.  相似文献   

12.
The majority of integral abutment bridges (IABs) in the United States are supported on steel H-piles to provide the flexibility necessary to minimize the attraction of large lateral loads to the foundation and abutment. In Hawaii, steel H-piles have to be imported, corrosion tends to be severe in the middle of the Pacific Ocean, and the low buckling capacity of steel H-piles in scour-susceptible soils has led to a preference for the use of concrete deep foundations. A drilled shaft-supported IAB was instrumented to study its behavior during and after construction over a 45-month period. This same IAB was studied using the finite-element method (FEM) in both two- (2D) and three dimensional (3D). The 3D FEM yields larger overall pile curvature and moments than 2D because in 3D, the high plasticity soil is able to displace in between the drilled shafts thereby “dragging” the shafts to a more highly curved profile while soil flow is restricted by plane strain beam elements in 2D. Measured drilled shaft axial loads were higher than the FEM values mainly due to differences between the assumed and actual axial stiffness and to a lesser extent on concrete creep in the drilled shafts and uneven distribution of loads among drilled shafts. Numerical simulations of thermal and stream loadings were also performed on this IAB.  相似文献   

13.
Load Testing of a Closed-Ended Pipe Pile Driven in Multilayered Soil   总被引:2,自引:0,他引:2  
Piles are often driven in multilayered soil profiles. The accurate prediction of the ultimate bearing capacity of piles driven in mixed soil is more challenging than that of piles driven in either clay or sand because the mechanical behavior of these soils is better known. In order to study the behavior of closed-ended pipe piles driven into multilayered soil profiles, fully instrumented static and dynamic axial load tests were performed on three piles. One of these piles was tested dynamically and statically. A second pile served as reaction pile in the static load test and was tested dynamically. A third pile was tested dynamically. The base of each pile was embedded slightly in a very dense nonplastic silt layer overlying a clay layer. In this paper, results of these pile load tests are presented, and the lessons learned from the interpretation of the test data are discussed. A comparison is made of the ultimate base and limit shaft resistances measured in the pile load tests with corresponding values predicted from in situ test-based and soil property-based design methods.  相似文献   

14.
The abutments of integral bridges are traditionally supported on a single row of steel-H-piles that are flexible and that are able to accommodate lateral deflections well. In Hawaii, steel-H-piles have to be imported, corrosion tends to be severe in the middle of the Pacific Ocean, and the low buckling capacity of steel-H-piles in scour-susceptible soils has led to a preference for the use of drilled shaft foundations. A drilled shaft-supported integral abutment bridge was monitored from foundation installation to in-service behavior. Strain gauge data indicate that drilled shaft foundations worked well for this integral bridge. After 45 months, the drilled shafts appear to remain uncracked. However, inclinometer readings provide a conflicting viewpoint. Full passive earth pressures never developed behind the abutments as a result of temperature loading because thermal movements were small and the long term movements were dominated by concrete creep and shrinkage of the superstructure that pulled the abutments towards the stream. In the stream, hydrodynamic loading during the wet season had a greater effect on the abutment movements than seasonal temperature cycling. After becoming integral, the upright members of the longitudinal bridge frame were not vertical because the excavation and backfilling process caused deep seated movements of the underlying clay resulting in the drilled shafts bellying out towards the stream. This indicates the importance and need for staged construction analysis in design of integral bridges in highly plastic clays. Also, the drilled shaft axial loads from strain gauges are larger than expected.  相似文献   

15.
In the literature, various “failure criteria” or methods of estimating the failure load in pile loading tests have been proposed. The criteria, based on varying assumptions, were intended for different methods of pile testing and were verified on tests of a variety of pile types and sizes. Most of the criteria were not developed for slow maintained loading tests of large-diameter (greater than 0.6 m) and long bored piles. Piles of this kind have considerable resistance, and it is often impractical to reach failure load as defined by the various criteria. In this paper, a total of 38 large-diameter bored piles (drilled shafts) that were tested, ranging from 0.6 to 1.8 m in diameter, varying from 12 to 66 m in depth, and founded in weathered geomaterials (rocks and saprolites), are critically reviewed and studied. Among them, a selection of seven pile load tests is examined in detail by using different existing failure criteria and specifications. The tests were chosen for their high degree of mobilization of pile capacity and the availability of reliable load-movement relationships. Specific aspects of pile behavior, such as the mobilization of toe resistance and shaft shortening, are also investigated using 31 loading tests to develop a new failure load criterion. The writers were heavily involved with the construction, testing, and analysis of 15 of the 38 piles. From the results of the study, a new nonsubjective, semiempirical method is proposed for estimating the approximate interpreted failure loads for piles founded in weathered geomaterials. The method is based on a moderately conservative estimation of the movement required to mobilize toe resistance and incorporates observations of shaft shortening from pile loading tests. Generally, the new method may allow more effective and consistent designs for large-diameter bored piles in weathered geomaterials.  相似文献   

16.
The behavior of bored pile groups in cemented sands was examined by a field testing program at a site in South Surra, Kuwait. The program consisted of axial load tests on single bored piles in tension and compression and compression tests on two pile groups each consisting of five piles. The spacing of the piles in the groups was two- and three-pile diameters. Soil exploration included standard penetration tests, dynamic cone tests, and pressure meter tests. Laboratory tests included basic properties and drained triaxial compression tests. Test results on single piles indicated that 70% of the ultimate load was transmitted in side friction that was uniform along the pile shafts. The calculated pile group efficiencies were 1.22 and 1.93 for a pile spacing of two- and three-pile diameters, respectively. Since settlement usually controls the design of pile groups in sand, the group factor defined herein as the ratio of the settlement of the group to the settlement of a single pile at comparable loads in the elastic range was determined from test results. A comparison between the measured values and calculated values based on a simplified formula was made.  相似文献   

17.
Integral abutment bridges (IABs) with short steel H-pile (HP) supported foundations ( ? 4?m of pile depth) are economical for many environmentally sensitive sites with shallow bedrock. However, such short piles may not develop an assumed, fixed-end support condition at some depth below the pile cap, which is inconsistent with traditional pile design assumptions involving an equivalent length for bending behavior of the pile. In this study, the response of an IAB with short HP-supported foundations and no special pile tip details such as drilling and socketing is investigated. Instrumentation of a single-span IAB with 4-m-long piles at one abutment and 6.2- to 8.7-m-long piles at the second abutment is described. Instrumentation includes pile strain gauging, pile inclinometers, extensometers to measure abutment movement, earth pressure cells, and thermistors. Pile and bridge response during construction, under controlled live load testing, and due to seasonal movements are presented and discussed. Abutment and pile head rotations due to self-weight, live load, and seasonal movements were all found to be significant. Measured abutment movements were likely affected by both temperature changes and deck creep and shrinkage. Based on the field study results presented here, moderately short HPs driven to bedrock without special tip details appear to perform well in IABs and do not experience stresses larger than those seen by longer piles.  相似文献   

18.
Lateral loads are often the primary forces that act on drilled shafts when they support retaining walls, bridge piers, or building foundations. The construction of drilled shafts often inadvertently introduces flaws that are not always detectable with well-performed nondestructive evaluation (NDE) techniques. The effect of such undetectable minor flaws on the lateral-load performance of drilled shafts needs to be assessed and subsequently considered in the design. This paper summarizes a field study that consisted of NDE of six, full-scale drilled shafts with preinstalled voids and lateral-load tests that were performed on the six test shafts. Results from the field study indicated that undetectable (by NDE) void flaws occupying areas of up to 15% of the cross-sectional area of the drilled shaft could reduce free-head shear capacity up to 16%. A subsequent numerical analysis was performed to filter out all variables, other than void flaws, that could affect the lateral-load deformation of drilled shafts. Numerical analysis results validated the field tests measurements. A parametric study of variables affecting the load-deformation behavior of drilled shafts suggests that a reduction in moment capacity of up to 27% is possible with undetected voids present in the shafts that were tested.  相似文献   

19.
This paper examines seven case histories of load tests on piles or drilled shafts under lateral load. Since the current design software to estimate lateral load resistance of deep foundations requires p-y curves. The first approach used was correlative whereby soil parameters determined from in situ tests [standard penetration test (SPT) and cone penetration test (CPT)] were used as input values for standard p-y curves. In the second approach p-y curves were calculated directly from the stress deformation data measured in dilatometer (DMT) and cone pressuremeter tests. The correlative evaluation revealed that, on the average, predictions based upon the SPT were conservative for all loading levels, and using parameters from the CPT best predicted field behavior. Typically, predictions were conservative, except at the maximum load. Since traditionally SPT and CPT correlation-based p-y curves are for “sands” or “clays,” this study suggests that silts, silty sands, and clayey sands should use cohesive p-y curves. For the directly calculated curves, DMT derived p-y curves predict well at low lateral loads, but at higher load levels the predictions become unconservative. p-y curves derived from pressuremeter tests predicted well for both “sands” and “clays” where pore pressures are not anticipated.  相似文献   

20.
A method was presented to evaluate the reliability of axially loaded pile groups designed using the traditional concept of group efficiency along the lines of load and resistance factor design. Group effects and system effects were identified as the major causes that led to a significantly greater observed reliability of pile foundations than calculated reliability of single piles. Statistical analyses were conducted to evaluate these effects based on observed pile performance. A database of pile group load tests was collected and interpreted for this purpose. Subsequently, the reliability of pile groups associated with the allowable stress design practice was calculated using the suggested method. The calculated probability of failure of pile groups was found to be one to four orders of magnitude smaller than that of single piles, depending on the significance of group effects and system effects. Finally, values of the target reliability index βTS for single piles required to achieve a specified target reliability of pile group foundations were calculated for several design methods. Due to group effects and system effects, the values of βTS should be different for single piles, a pile group, and a pile system of several groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号