首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: Lym-1, a monoclonal antibody that preferentially targets malignant lymphocytes, has induced remissions in patients with non-Hodgkin's lymphoma (NHL) when labeled with iodine 131 ((131)I). Based on the strategy of fractionating the total dose, this study was designed to define the maximum-tolerated dose (MTD) and efficacy of the first two, of a maximum of four, doses of (131)I-Lym-1 given 4 weeks apart. Additionally, toxicity and radiation dosimetry were assessed. MATERIALS AND METHODS: Twenty patients with advanced NHL entered the study a total of 21 times. Thirteen (62%) of the 21 entries had diffuse large-cell histologies. All patients had disease resistant to standard therapy and had received a mean of four chemotherapy regimens. (131)I-Lym-1 was given after Lym-1 and (131)I was escalated in cohorts of patients from 40 to 100 mCi (1.5 to 3.7 GBq)/m2 body surface area. RESULTS: Mean radiation dose to the bone marrow from body and blood (131)I was 0.34 (range, 0. 1 6 to 0.63) rad/mCi (0.09 mGy/MBq; range, 0.04 to 0.17 mGy/ MBq). Dose-limiting toxicity was grade 3 to 4 thrombocytopenia with an MTD of 100 mCi/m2 (3.7 GBq/m2) for each of the first two doses of (131)I-Lym-1 given 4 weeks apart. Nonhematologic toxicities did not exceed grade 2 except for one instance of grade 3 hypotension. Ten (71 %) of 14 entries who received at least two doses of (131)I-Lym-1 therapy and 11 (52%) of 21 total entries responded. Seven of the responses were complete, with a mean duration of 14 months. All three entries in the 100 mCi/m2 (3.7 MBq/m2) cohort had complete remissions (CRs). All responders had at least a partial remission (PR) after the first therapy dose of (131)I-Lym-1. CONCLUSION: (131)I-Lym-1 induced durable remissions in patients with NHL resistant to chemotherapy and was associated with acceptable toxicity. The nonmyeloablative MTD for each of the first two doses of (131)I-Lym-1 was 100 mCi/m2 (total, 200 mCi/m2) (3.7 GBq/m2; total, 7.4 GBq/m2).  相似文献   

2.
We aimed to determine the maximum tolerated dose (MTD) of 131I-labeled 81C6 in patients with leptomeningeal neoplasms or brain tumor resection cavities with subarachnoid communication and to identify any objective responses. 81C6 is a murine IgG monoclonal antibody that reacts with tenascin in gliomas/carcinomas but does not react with normal adult brain. 131I-labeled 81C6 delivers intrathecal (IT) radiation to these neoplasms. This study was a Phase I trial in which patients were treated with a single IT dose of 131I-labeled 81C6. Cohorts of three to six patients were treated with escalating doses of 131I (starting dose, 40 mCi; 20 mCi escalations) on 10 mg 81C6. MTD is defined as the highest dose resulting in serious toxicity in no more than two of six patients. Serious toxicity is defined as grade III/IV nonhematological toxicity or major hematological toxicity. We treated 31 patients (8 pediatric and 23 adult). Eighteen had glioblastoma multiforme. Patients were treated with 131I doses from 40 to 100 mCi. Hematological toxicity was dose limiting and correlated with the administered 131I dose. No grade III/IV nonhematological toxicities were encountered. A partial response occurred in 1 patient and disease stabilization occurred in 13 (42%) of 31 patients. Twelve patients are alive (median follow-up, > 320 days); five are progression free >409 days median posttreatment. The MTD of a single IT administration of 131I-labeled 81C6 in adults is 80 mCi 131I-labeled 81C6. The MTD in pediatric patients was not reached at 131I doses up to 40 mCi normalized for body surface area.  相似文献   

3.
PURPOSE: Mouse monoclonal antibody (mAb) M195 (anti-CD33) is reactive with most myeloid leukemia cells, monocytes, and hematopoietic progenitors, but not with other hematopoietic cells or stem cells nor with nonhematopoietic human tissues. A therapeutic dose-escalation study of M195 labeled with iodine 131 was conducted in patients with relapsed or refractory myeloid leukemias. METHODS: Twenty-four patients (16 relapsed or refractory acute myeloid leukemias, five blastic myelodysplastic syndromes [MDS], two chemotherapy-related secondary leukemias, and one blastic chronic myelogenous leukemia [CML]), including seven who had failed to respond to prior bone marrow transplantation (BMT), received from 50 mCi/m2 to 210 mCi/m2 of 131I-M195 in divided doses. RESULTS: In 22 patients, whole-body gamma-imaging demonstrated marked uptake of antibody into all areas of bone marrow. Twenty-three patients (96%) demonstrated decreases in peripheral-blood cell counts, with decreased percentage of bone marrow blasts seen in 83% of cases. Eighty-nine percent of bone marrow biopsies examined quantitatively demonstrated substantial decreases in the number of blasts, with greater than 99% of blasts killed in some patients. The two cases that failed to demonstrate leukemic cytoreduction occurred in the first two dose levels. For 131I doses of 135 mCi/m2 or greater, pancytopenia was profound and lasted for at least 12 days. Eight patients had sufficient marrow cytoreduction to proceed to BMT. Three of these achieved marrow remission, one of 6+, and one of 9 months' duration. Two patients in blastic phase temporarily reverted to their original myelodysplastic states. Thirty-seven percent of assessable patients developed human anti-mouse antibody (HAMA). In two patients with HAMA who were re-treated, plasma 131I-M195 levels could not be maintained and no therapeutic effect resulted. Significant nonhematologic toxicity (hepatic) was seen in one patient and the maximum-tolerated dose (MTD) was not reached. CONCLUSION: These data suggest that safe leukemic cytoreduction can be achieved with 131I-M195 even in multiply relapsed or chemotherapy-refractory leukemias. This agent may be useful as part of a preparative regimen for BMT.  相似文献   

4.
PURPOSE: To determine the maximum-tolerated dose (MTD) of iodine 131 (131I)-labeled 81C6 monoclonal antibody (mAb) in brain tumor patients with surgically created resection cavities (SCRCs) and to identify any objective responses to this treatment. METHODS: In this phase I trial, eligible patients were treated with a single injection of 131I-labeled 81C6. Cohorts of three to six patients were treated with escalating dosages of 131I (starting dose of 20 mCi with a 20-mCi escalation in subsequent cohorts) administered through an Ommaya reservoir in the SCRC. Patients were followed up for toxicity and response until death or for a minimum of 1 year after treatment. The SCRC patients, who were previously irradiated, were followed up without additional treatment unless progressive disease was identified. RESULTS: We administered 36 treatments of 131I doses up to 120 mCi to 34 previously irradiated patients with recurrent or metastatic brain tumors. Dose-limiting toxicity was reached at 120 mCi and was limited to neurologic or hematologic toxicity. None of the patients treated with less than 120 mCi developed significant neurologic toxicity; one patient developed major hematologic toxicity (MHT). The estimated median survival for patients with glioblastoma multiforme (GBM) and for all patients was 56 and 60 weeks, respectively. CONCLUSION: The MTD for administration of 131I-labeled 81C6 into the SCRCs of previously irradiated patients with recurrent primary or metastatic brain tumors was 100 mCi. The dose-limiting toxicity was neurologic toxicity. We are encouraged by the minimal toxicity and survival in this phase I trial. Radiolabeled mAbs may improve the current therapy for brain tumor patients.  相似文献   

5.
A Phase I dose-escalation study using 90Y-CYT-356 monoclonal antibody was performed in 12 patients with hormone-refractory prostate carcinoma. Biodistribution studies using 111In-CYT-356 were performed 1 week before 90Y-CYT-356 administration. Of the 12 patients, 58% had at least one site of disease imaged after administration of 111In-CYT-356. The dose of 90Y ranged from 1.83-12 mCi/m2. Both 111In and 90Y-CYT-356 were tolerated well, without significant nonhematological toxicity. Myelosuppression was the dose-limiting toxicity and occurred at dose levels of 4.5-12 mCi/m2. Of the patients receiving 相似文献   

6.
Radioiodine long has proven to be a safe and effective treatment for thyroid disease. Nonetheless, persisting concerns regarding radiogenic stochastic risks (e.g., carcinogenesis) to patients, their families, and the general public have led regulators to establish criteria for release of 131I-containing patients from medical confinement, with limits ranging from as low as 2 mCi in some parts of Europe to as high as 30 mCi in the United States. To optimize clinical efficacy and cost-effectiveness of 131I therapy, such regulations should be based on logical dosimetric considerations. The thyroidal absorbed dose, proportional to maximum uptake and effective half-life and inversely proportional to mass, is typically approximately 1,500 rad/mCi of 131I administered to a euthyroid adult (based on a thyroid maximum uptake of 25%, effective half-life equivalent to the physical half-life of 131I (8.04 days), and mass of 20 g). As thyroid uptake increases from 0% to 100%, extrathyroidal absorbed doses range from a minimum of 0.15 to 0.5 rad/mCi for breast and gonads to a maximum of 1.5 to 2 rad/mCi for stomach and salivary glands; the absorbed doses of the urinary bladder wall, in contrast, decrease with increasing thyroid uptake, from 2 to 0.6 rad/mCi. In hyperthyroid patients (approximately 15%) with a small iodine pool (so-called small patients), the short effective half-life of radioiodine in the thyroid and high serum concentrations of long-lived protein-bound 131I result in a standard 7,000-rad absorbed dose for treatment of Graves' disease requiring an administered activity of 28 mCi of 131I and yielding a prohibitively high blood absorbed dose of 150 rad. Importantly, once the fetal thyroid begins to function and accumulate radioiodine at a gestational age of 10-12 weeks, fetal thyroid absorbed doses as large as 5,000 rad/mCi of 131I administered to the mother can result. Thus, pregnancy is an absolute contraindication to administration of 131I because of the risk of radiogenic cretinism. Based on actual measurements of thyroid activity and of external absorbed dose, the total thyroid and mean extrathyroidal absorbed doses to adult family members from immediately released 131I-treated patients are approximately 0.01 and approximately 0.02 rad/mCi administered, respectively, yielding an effective dose of approximately 0.02 rem/mCi. A maximum permissible effective dose of 0.5 rem for adults therefore is consistent with a release criterion of 30 mCi of retained 131I. Lower-activity release criteria therefore may be unnecessarily restrictive.  相似文献   

7.
BACKGROUND: This pilot project was undertaken to evaluate the toxicity of and tumor response to combined 131I anti-carcinoembryonic antigen monoclonal antibody (131I anti-CEA RMoAb) and hyperthermia in patients with metastatic colorectal adenocarcinoma. METHODS: Nine patients who had colorectal carcinoma with liver metastases were enrolled in this study. Intact 131I anti-CEA RMoAb was used (the specific antibody was IMMU-4, provided by Immunomedics, Inc., Morris Plains, NJ). During the diagnostic phase, dosimetry revealed that the tumor site received a higher radiation dose than the surrounding normal tissues in only six patients. These six, who were treated with radioimmunotherapy and hyperthermia, were the basis of this study. The first three patients were treated with 30 mCi/m2 of 131I anti-CEA RMoAb, and the next three received 60 mCi/m2. Pharmacokinetic clearance data were reported for all nine patients. RESULTS: Thermometry data revealed an average T90 of 40.3 (+/- 1.4 degrees C) and T50 of 41.1 (+/- 1.2 degrees C). The average thermal dose equivalent at 42.5 degrees C was 34.5 (+/- 21.5) minutes. The average Tmin, Tmax, and Tmeam were 40 (+/- 1.2 degrees C), 42.4 (+/- 0.7 degrees C), and 41.1 (+/- 1.1 degrees C), respectively. The pharmacokinetic clearance data of antibody showed monoexponential plasma clearances in all patients except one, in whom a biexponential plasma clearance was observed. In general, similar plasma and whole-body clearances as well as similar urinary excretions were observed when diagnostic and therapeutic phases for each patient were compared. Two of the six patients showed a marked improvement in their symptoms; five patients showed a drop in carcinoembryonic antigen levels. A follow-up computed tomography scan one month after treatment showed no change in tumor volume in five patients; one patient showed a partial response. Three patients developed toxicity, two developed moderate thrombocytopenia (39,000 and 58,000), and the other patient developed hematoma resulting from the insertion of a catheter for thermometry. CONCLUSIONS: It is feasible to combine hyperthermia and radiolabeled monoclonal antibodies, and the combination was well tolerated by these patients. The interaction between hyperthermia and low dose rate radioimmunotherapy is complex. Further studies are necessary to explore the use of this combined modality in the management of maligancies.  相似文献   

8.
We studied 355 patients with Grave's disease to characterize transient hypothyroidism and its prognostic value following 131I therapy. METHODS: The patients received therapeutic 131I treatment as follows: 333 received a dose < 10 mCi (6.6 +/- 1.9 mCi) and 22 received a dose > 10 mCi (12.8 +/- 2.9 mCi). Diagnosis of transient hypothyroidism was based on low T4, regardless of TSH within the first year after 131I followed by recovery of T4 and normal TSH. RESULTS: After administration of < 10 mCi 131I, 40 patients developed transient hypothyroidism during the first year; transient hypothyroidism was symptomatic in 15. There was no transient hypothyroidism after high doses (> 10 mCi) of 131I. Iodine-131 uptake > 70% at 2 hr before treatment was a risk factor for developing transient hypothyroidism (Odds ratio 2.8, 95% confidence interval 0.9-9.4). At diagnosis of transient hypothyroidism, basal TSH levels were high (51%), normal (35%) or low (14%); therefore, the transient hypothyroidism was not centralized. If hypothyroidism developed during the first 6 mo after basal TSH > 45 mU/liter ruled out transient hypothyroidism. CONCLUSION: The development of transient hypothyroidism and its hormonal pattern did not influence long-term thyroid function. Since no prognostic factors reliably predicted transient hypothyroidism before 131I or at the time of diagnosis, if hypothyroidism appears within the first months after 131I, the reevaluation of thyroid function later is warranted to avoid unnecessary chronic replacement therapy.  相似文献   

9.
Targeted hematopoietic irradiation delivered by 131I-anti-CD45 antibody has been combined with conventional marrow transplant preparative regimens in an effort to decrease relapse. Before increasing the proportion of therapy delivered by radiolabeled antibody, the myeloablative and immunosuppressive effects of such low dose rate irradiation must be quantitated. We have examined the ability of 131I-anti-CD45 antibody to facilitate engraftment in Ly5-congenic and H2-mismatched murine marrow transplant models. Recipient B6-Ly5(a) mice were treated with 30F11 antibody labeled with 0.1 to 1.5 mCi 131I and/or total body irradiation (TBI), followed by T-cell-depleted marrow from Ly5(b)-congenic (C57BL/6) or H2-mismatched (BALB/c) donors. Engraftment was achieved readily in the Ly5-congenic setting, with greater than 80% donor granulocytes and T cells after 0.5 mCi 131I (estimated 17 Gy to marrow) or 8 Gy TBI. A higher TBI dose (14 Gy) was required to achieve engraftment of H2-mismatched marrow, and engraftment occurred in only 3 of 11 mice receiving 1.5 mCi 131I delivered by anti-CD45 antibody. Engraftment of H2-mismatched marrow was achieved in 22 of 23 animals receiving 0.75 mCi 131I delivered by anti-CD45 antibody combined with 8 Gy TBI. Thus, targeted radiation delivered via 131I-anti-CD45 antibody can enable engraftment of congenic marrow and can partially replace TBI when transplanting T-cell-depleted H2-mismatched marrow.  相似文献   

10.
PURPOSE: Astrocytomas are extremely resistant to currently available treatments. Cranial irradiation is a mainstay of frontline therapy, but tumor recurrence is nearly universal. Paclitaxel has shown antitumor efficacy against astrocytoma cell lines, and is a potent radiosensitizer. For these reasons, we conducted a phase I study of weekly paclitaxel and concurrent cranial irradiation in patients with newly diagnosed astrocytomas. PATIENTS AND METHODS: Patients with astrocytomas were eligible for this study following initial surgery if they had a Karnofsky performance score (KPS) > or = 60%; normal hematologic, liver, and renal function; and could give informed consent. Beginning on day 1 of treatment, patients received paclitaxel by 3-hour infusion once weekly for 6 weeks, concurrent with standard cranial irradiation. Pharmacokinetic studies were performed on 10 patients. RESULTS: Sixty patients were enrolled; 56 were fully assessable. Forty-eight had glioblastomas (GBMs), 10 anaplastic astrocytomas (AAs), and two astrocytomas. Age ranged from 21 to 81 years (median, 55); KPS ranged from 60 to 100 (median, 70). The paclitaxel dose was escalated from 20 mg/m2 to 275 mg/m2. No clinically significant anemia or thrombocytopenia occurred. Only one patient (175 mg/m2) became neutropenic. Sensory neuropathy was dose-limiting. The maximum tolerated dose (MTD) was 250 mg/m2. Paclitaxel pharmacokinetic profiles in study patients were identical to those of previously reported patients with other solid tumors. CONCLUSION: The MTD of paclitaxel administered weekly for 6 weeks by 3-hour infusion is 250 mg/m2. Since patients with brain tumors often have preexisting neurologic deficits, we suggest 225 mg/m2 as the optimum dose for phase II trials in this group of patients.  相似文献   

11.
Evidence for clinically significant radiosensitization by the halogenated pyrimidine 5-iododeoxyuridine (IdUrd) continues to accumulate. In vitro radiosensitization has been demonstrated in human colon tumor cell lines following exposure to 1-10 micrometer. Coadministration of leucovorin (LV) increases radiosensitization, which correlates directly with increased IdUrd DNA incorporation. Clinical data regarding proliferation rates and thymidine kinase levels in tumors versus normal tissues suggest selective incorporation of IdUrd into gastrointestinal tumors may occur. The objectives of this Phase I study were: (a) to assess the feasibility of LV modulation of IdUrd radiosensitization by determining the maximum tolerated dose (MTD) of IdUrd plus LV; and (b) to perform correlative laboratory studies to investigate the potential of IdUrd plus LV to increase radiosensitization in vivo. Seventeen patients with unresectable or recurrent gastrointestinal adenocarcinomas received a 14-day course of continuous i.v. infusion of IdUrd prior to initiation of radiotherapy. Two additional 14-day infusions of IdUrd with LV were given during the course of radiotherapy (60 Gy in 6 weeks). The initial dose of IdUrd was 250 mg/m2/day and was escalated in subsequent patients to 400 and 600 mg/m2/day. The LV dose remained fixed at 250 mg/m2/day. Leukopenia was the dose-limiting toxicity, and 400 mg/m2/day was the MTD for this trial. At the MTD, the mean +/- SD steady-state plasma concentration of IdUrd during the infusion, measured by high-performance liquid chromatography, was 0.66 +/- 0.23 micrometer. There was no significant influence of LV on IdUrd DNA incorporation in peripheral blood granulocytes as measured by high-performance liquid chromatography. Based on toxicity data and correlative laboratory studies, a meaningful increase in radiosensitization would not be achieved with the IdUrd infusion schedule and dose of LV investigated compared with IdUrd alone.  相似文献   

12.
PURPOSE: The CD20 B-lymphocyte surface antigen expressed by B-cell lymphomas is an attractive target for radioimmunotherapy, treatment using radiolabeled antibodies. We conducted a phase I dose-escalation trial to assess the toxicity, tumor targeting, and efficacy of nonmyeloablative doses of an anti-CD20 monoclonal antibody (anti-B1) labeled with iodine-131 (131I) in 34 patients with B-cell lymphoma who had failed chemotherapy. PATIENTS AND METHODS: Patients were first given tracelabeled doses of 131I-labeled anti-B1 (15 to 20 mg, 5 mCi) to assess radiolabeled antibody biodistribution, and then a radioimmunotherapeutic dose (15 to 20 mg) labeled with a quantity of 131I that would deliver a specified centigray dose of whole-body radiation predicted by the tracer dose. Whole-body radiation doses were escalated from 25 to 85 cGy in sequential groups of patients in 10-cGy increments. To evaluate if radiolabeled antibody biodistribution could be optimized, initial patients were given one or two additional tracer doses on successive weeks, each dose preceded by an infusion of 135 mg of unlabeled anti-B1 one week and 685 mg the next. The unlabeled antibody dose resulting in the most optimal tracer biodistribution was also given before the radioimmunotherapeutic dose. Later patients were given a single tracer dose and radioimmunotherapeutic dose preceded by infusion of 685 mg of unlabeled anti-B1. RESULTS: Treatment was well tolerated. Hematologic toxicity was dose-limiting, and 75 cGy was established as the maximally tolerated whole-body radiation dose. Twenty-eight patients received radioimmunotherapeutic doses of 34 to 161 mCi, resulting in complete remission in 14 patients and a partial response in eight. All 13 patients with low-grade lymphoma responded, and 10 achieved a complete remission. Six of eight patients with transformed lymphoma responded. Thirteen of 19 patients whose disease was resistant to their last course of chemotherapy and all patients with chemotherapy-sensitive disease responded. The median duration of complete remission exceeds 16.5 months. Six patients remain in complete remission 16 to 31 months after treatment. CONCLUSION: Nonmyeloablative radioimmunotherapy with 131I-anti-B1 is associated with a high rate of durable remissions in patients with B-cell lymphoma refractory to chemotherapy.  相似文献   

13.
We conducted a Phase IB trial of antidisialoganglioside chimeric 14. 18 (ch14.18) antibody and interleukin 2 (IL-2) to determine the maximal tolerated dose (MTD), immunological effects, antitumor effects, and toxicity of this treatment combination. Twenty-four melanoma patients received immunotherapy with ch14.18 antibody and a continuous infusion of Roche IL-2 (1.5 x 10(6) units/m2/day) given 4 days/week for 3 weeks. The ch14.18 antibody (dose level, 2-10 mg/m2/day) was scheduled to be given for 5 days, before, during, or following initial systemic IL-2 treatment. The ch14.18 MTD was 7.5 mg/m2/day, and 15 patients were treated with the ch14.18 MTD. Immunological effects included the induction of lymphokine-activated killer activity and antibody-dependent cellular cytotoxicity by peripheral blood mononuclear cells. In addition, serum samples obtained following ch14.18 infusions were able to facilitate in vitro antibody-dependent cellular cytotoxicity. Antitumor activity included one complete response, one partial response, eight patients with stable disease, and one patient with >50% decrease of hepatic metastases in the face of recurrence of a s.c. lesion. Dose-limiting toxicities were a severe allergic reaction and weakness, pericardial effusion, and decreased performance status. Most patients treated at the MTD had abdominal, chest, or extremity pain requiring i.v. morphine. One patient had an objective peripheral neuropathy. This IL-2 and ch14.18 treatment combination induces immune activation in all patients and antitumor activity in some melanoma patients. We are attempting to enhance this treatment approach by addition of the anti-GD3 R24 antibody to this IL-2 and ch14.18 regimen.  相似文献   

14.
Recent clinical results suggest that higher anti-tumor efficacy may be achieved with internalizing monoclonal antibodies (MAbs) at lower toxicity when labeled with Auger-electron, as compared to conventional beta-emitters. The aim of our study was to compare the toxicity and anti-tumor efficacy of the 125I-labeled internalizing MAb, CO17-1A, with its 131I-labeled form in a human colon cancer model in nude mice. Biodistribution studies were performed in nude mice bearing s.c. human colon cancer xenografts. For therapy, the mice were injected either with unlabeled 125I- or 131I-labeled C017-1A at equitoxic doses. Control groups were left untreated, were given a radiolabeled isotype-matched irrelevant antibody or a tumor-specific, but noninternalizing antibody. The maximum tolerated activities (MTD) of 131I-and 125I-CO17-1A without artificial support were 300 microCi and 3 mCi, respectively. Myelotoxicity was dose-limiting; bone marrow transplantation allowed for an increase of the MTD to 400 microCi of 131I-17-1A, whereas the MTD of 125I-17-1A with bone marrow support had not been reached at 5 mCi. Whereas no significant therapeutic effects were seen with unlabeled C017-1A, tumor growth was retarded with 131I-CO17-1A. With the 125I-label, however, therapeutic results were clearly superior. In contrast, no significant difference was observed in the therapeutic efficacy of the 131I- vs. 125I-labeled, noninternalizing antibodies. Our data indicate a superiority of Auger-electron emitters, such as 125I, as compared to therapy with conventional beta-emitters with internalizing antibodies. The lower toxicity of Auger emitters may be due to the short path length of their low-energy electrons, which can reach the nuclear DNA only if the antibody is internalized (as is the case in antigen-expressing tumor tissue, but not in the stem cells of the red marrow).  相似文献   

15.
PURPOSE: A dose-escalation study of irinotecan hydrochloride (CPT-11) combined with fixed-dose cisplatin was conducted to determine the maximum-tolerated dose (MTD), dose-limiting toxicities, and objective response rate in patients with advanced gastric cancer. PATIENTS AND METHODS: Twenty-four patients with or without prior chemotherapy were enrolled. All patients were assessable for toxicities and response. On day 1, CPT-11 was administered as a 90-minute intravenous (I.V.) infusion, which was followed 2 hours later by a 120-minute I.V. infusion of cisplatin 80 mg/m2. CPT-11 alone at the same dose was administered again on day 15. The treatment was repeated every 4 weeks until disease progression was observed. The initial dose of CPT-11 was 60 mg/m2, and was escalated in increments of 10 mg/m2 until severe or life-threatening toxicity was observed. RESULTS: The MTD of this combination was CPT-11 80 mg/m2. At this dose level, 16.7% of patients (two of 12) had leukopenia of less than 1,000/microL, 66.7% (eight of 12) had neutropenia of less than 500/microL, and 16.7% (two of 12) had severe diarrhea of grade 4 during the first course. The dose-limiting toxicity was neutropenia. Ten patients achieved a partial response (PR), and the overall response rate was 41.7% among 24 patients (95% confidence interval, 21.9% to 61.4%). CONCLUSION: The recommended dose and schedule is CPT-11 70 mg/m2 on days 1 and 15 and cisplatin 80 mg/m2 on day 1 every 4 weeks. This combination of CPT-11 and cisplatin, considered to be active against advanced gastric cancer with acceptable toxicity, should be further assessed in a phase II study.  相似文献   

16.
Leukemia has rarely been reported as a late complication of 131I therapy, occurring mostly after cumulative doses of 800 mCi. We observed two cases of acute myeloid leukemia (AML) after 131I therapy for hyperthyroidism and thyroid carcinoma, respectively. The first patient was a 45-year-old woman treated with a single dose of 27 mCi 131I for hyperthyroidism. She developed AML (FAB M2) 14 months after receiving 131I; the second patient was a 44-year-old man affected by refractory thyroid carcinoma who received a total dose of 1 Ci 131I plus radiotherapy and developed AML (FAB M6) 8 years after the first exposure to 131I. Although it is a very rare event, the occurrence of leukemia after 131I treatment should be kept in mind, considering the widespread use of 131I, particularly in the treatment of hyperthyroidism, and the unfavorable outcome of secondary leukemia.  相似文献   

17.
In previous studies, highly heterogeneous uptake of 131I-labelled chimeric monoclonal antibody G250 ([131I]cG250) in primary renal cell carcinomas has been observed (intratumoral differences > factor 100). In this study, we investigated a possible correlation between intratumoral antibody uptake and four immunohistochemically determined parameters: G250 antigen expression, blood vessel density, neovascularization and percentage of viable tumour cells. Whole tumour slices of four different tumours were cut into 1-cm3 cubes, and in each cube the [131I]cG250 uptake was determined. The correlation between [131I]cG250 uptake and each individual parameter was determined in a multiple regression analysis. Additionally, the data were reanalysed after introducing arbitrary cut-off values for each parameter. If a sample showed expression of a parameter above the introduced threshold value, this sample fulfilled one condition. Subsequently, the Pearson correlation coefficients were calculated from [131I]cG250 uptake and the number of fulfilled conditions (0-3). All tumour samples with high [131I]cG250 uptake [> 0.1% of the injected dose per gram (ID g(-1))] showed high antigen expression (> 50%). However, not all samples with high antigen expression displayed high uptake. A statistically significant correlation between [131I]cG250 uptake and antigen expression was found (beta = 0.44, 0.69 and 0.74) in three out of four tumours analysed. Of the other determined parameters, no consistent correlation with [131I]cG250 uptake was found; only the percentage of viable tumour cells correlated significantly in two out of four tumours (beta = 0.80 and 0.26). Calculation of the Pearson correlation coefficients showed a statistically significant correlation between [131I]cG250 uptake and an increased number of fulfilled conditions in all tumours, indicating that each of the individual parameters contribute to the uptake of [131I]cG250. These observations indicate that high antigen expression is a prerequisite for high antibody uptake. However, regional differences in antibody uptake within a tumour cannot be explained by antigen expression alone.  相似文献   

18.
Twenty-six patients with squamous cell cancer of the cervix were treated with i.v. paclitaxel, 250 mg/m2 over 3 h every 21 days. They received steroid, H1 and H2 blocker premedications, and granulocyte-colony-stimulating factor (G-CSF) support (5 microgram/kg/day). No prior chemotherapy, except as a radiation sensitizer, was allowed. The median age was 50 (range, 36-81) years, and performance status Zubrod was 1 (range, 0-2). Eight (33%) patients had prior surgery, and 22 (92%) had prior radiation therapy. Twenty-four patients were evaluable for response; 2 were later found to be ineligible. Five patients had partial responses (21%; 95% confidence interval, 6-40%), and 14 (58%; 95% confidence interval, 35-78%) had stable disease. The median duration of response was 10 (range, 3-27+) weeks. The responses were within the radiation port (four responses) and outside of it (one response). The median interval from the start of irradiation to the start of paclitaxel in responding patients was 94 weeks, whereas in patients with stable disease it was 68 weeks, and in patients whose disease progressed it was 46 weeks. Eighty-eight percent of the 105 cycles of paclitaxel were administered at a dose of 250 mg/m2 or higher. Granulocytopenia was brief and noncumulative, with grades 3 and 4 experienced by 5 and 3 patients, respectively. G-CSF was used for a median of 7 (range, 2-14) days/cycle. Anemia was mild, with G3 noted in 3 patients, and thrombocytopenia was not significant. Infections and musculoskeletal pain were mild and infrequent. Sensory (14 patients G1 or G2 and 2 patients G3) and motor (4 patients G1 or G2 and 1 patient G3) neurotoxicity was noted. There was no significant cardiovascular toxicity. Paclitaxel is active in patients with squamous cell cancer of the cervix and is well tolerated at this dose schedule with G-CSF support.  相似文献   

19.
PURPOSE: The analogue 131I-metaiodobenzylguanidine (MIBG), which is specifically targeted to neuroblastoma cells, may provide more effective and less toxic treatment for neuroblastoma than conventional external-beam radiotherapy. We report a dose escalation study of 131I-MIBG to define dose-limiting toxicity without and with autologous bone marrow support. PATIENTS AND METHODS: Thirty patients with relapsed neuroblastoma were treated in groups of six with escalating doses of 3 to 18 mCi/kg of 131I-MIBG. After rapid escalation in the first three patients treated at 3 to 6 mCi/kg, treatment was escalated in 3-mCi/kg increments from 9 to 18 mCi/kg. Autologous tumor-free bone marrow was cryopreserved in all patients receiving 12 mCi/kg and more. Toxicity and response were assessed. RESULTS: Eighty percent of patients who received 12 mC/kg or more experienced grade 4 thrombocytopenia and/or neutropenia. Dose-limiting hematologic toxicity was reached at 15 mCi/kg, at which level two of five assessable patients required bone marrow reinfusion for absolute neutrophil count (ANC) of less than 200/microL for more than 2 weeks, and four of nine at the 18-mCi/kg level. Prolonged thrombocytopenia was common, with failure to become platelet-transfusion independent in nine patients. One patient with extensive prior treatment developed secondary leukemia and three became hypothyroid. Responses were seen in 37% of patients, with one complete response (CR), 10 partial response (PR), three mixed response, 10 stable disease, and six progressive disease. The minimum dose of 131I-MIBG for 10 of the 11 responders was 12 mCi/kg. CONCLUSION: Treatment with 131I-MIBG has mainly hematologic toxicity, which can be abrogated with bone marrow rescue. The high response rate in refractory disease suggests that this agent may be useful in combination with myeloablative chemotherapy and autologous stem-cell rescue to improve outcome in advanced neuroblastoma.  相似文献   

20.
The use of 131I doses of several mCi for scans can stun the thyrocytes and thyroid cancer cells, whereas the usual dose (300 microCi) of 123I does not. We compared the diagnostic accuracy of the 123I (300 microCi) scans and that of 131I (3-10 mCi) scans in 155 patients. The diagnostic accuracy of a 123I scan in detecting functioning thyroid remnant/metastasis was 89.5% (77/86 scans) and that of a 131I scan was 92.9% (39/42) in 6 week-postoperative patients (p = 0.750). For radioablation therapy follow-up patients, the diagnostic accuracy of 123I in determining presence or absence of functioning remnant or metastasis was 69.4% (25/36) and that of 131I was 92.5% (49/53) with a p value of 0.079. The success rates for complete ablation of functioning tissue after radioiodine therapy administered after diagnostic 123I and after 131I were 72% (34/47) and 56% (24/43), respectively, with a p value of 0.125. Our study indicates the following: 1) for the first postoperative evaluation, the diagnostic accuracy of the 123I scan was essentially equal to that of the 131I scan, and the success rate of radioablation therapy appears to be better than 123I scan; and 2) for postablation follow-up surveys, the 131I scan appears to be better but carries the risk of stunning the functioning cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号