首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermetallic compound Al8Mg5, of importance in the selective corrosion of Al-Mg alloys, was investigated electrochemically. Stationary potentiodynamic and pontentiodynamic studies were performed on synthetically obtained Al8Mg5 samples. A tendency for passivity in electrolytes of pH values between 4 and 10 in a limited potential range (aluminium oxide or aluminium and magnesium oxides stability), increasing with increasing pH, was observed. For high pH values the Al8Mg5 compound was passive over the entire range of anodic potentials. In the corrosion and anodic polarization of Al8Mg5 magnesium dissolution is favoured rather than the formation of Al+3 and Mg+2 in stoichiometrically equivalent amounts.  相似文献   

2.
Anodic behaviour of a model second phase: Al-20at.%Mg-20at.%Cu   总被引:1,自引:0,他引:1  
The anodic behaviour of sputtering-deposited Al-20at.%Mg-20at.%Cu alloy is investigated during anodizing and potentiodynamic polarization treatments using transmission electron microscopy, X-ray photoelectron spectroscopy and medium energy ion scattering. The composition of the alloy is close to that of the S-phase in 2024 aluminium alloy. The anodizing behaviour in both 0.1 M ammonium pentaborate and 0.1 M sodium hydroxide electrolytes follows the behaviour of more dilute, solid-solution, aluminium alloys, with enrichment of copper developing in the alloy during the growth of an alumina-based initial oxide containing incorporated magnesium species. Oxygen gas is generated following sufficient enrichment of copper for its oxidation to proceed and hence, for copper species to enter the oxide film. The generation of oxygen gas causes extensive damage to the film, which limits the voltage to relatively low values. Potentiodynamic polarization in 0.1 M sodium hydroxide electrolyte revealed mainly passive behaviour following an initial period of corrosion during which the passive film is developed. In this initial period, copper enriches in the alloy, beneath an oxide film containing aluminium and magnesium species. The magnesium species migrate faster through the film than the aluminium species and form a surface layer of MgO/Mg(OH)2, which protects against losses of aluminium species to solution and permits the establishment of the passive film. The steady open-circuit potential of the passivated alloy in the hydroxide solution is about −550 mV (SCE), compared with about −1940 mV (SCE) for aluminium.  相似文献   

3.
Anodic film morphologies on aluminium aerospace alloys are strongly influenced by alloying elements. The present study uses model alloys to interpret the early stages of anodizing of AA2024-T3 and AA7075-T6 aluminium alloys in 0.4 M sulphuric acid electrolyte. Further, coupled model alloys, representative of matrix and second phase regions, are employed as alloy analogues. The findings enable assignment of transient anodic currents during potentiodynamic polarization of the commercial alloys to oxidation of Al2CuMg phase at 0 V SCE and of Al2Cu, Al7Cu2Fe and Al–Cu–Fe phases at 5–6 V SCE. The phases that oxidize at the latter potential also cause voltage arrests during galvanostatic anodizing.  相似文献   

4.
采用线性电位扫描极化曲线测试 ,以及恒电位极化下磁场扰动法研究了磁场对铜在氯化钠溶液中阳极溶解的作用。在阳极表观 Tafel区 ,无磁场时恒电位极化然后外加磁场使阳极电流密度增大 ;有磁场时恒电位极化然后撤去磁场使阳极电流密度减小。磁场通过加速电极溶液界面的传质过程而加速阳极溶解。由于 Cu/ Na Cl与Fe/ H2 SO4体系阳极 Tafel区速率控制步骤不同 ,会导致不同的磁场效应作用  相似文献   

5.
采用恒电流和动电位极化技术研究经预氧化的和未经预氧化的Cu-Al基阳极(Cu-10Al和Cu-9.8Al-2Mn)在KF-AlF3-Al2O3熔体中的阳极行为。将合金在700℃下进行短时间(8 h)氧化,然后在800℃下施以0.4 A/cm2的电流密度进行1 h恒电流极化。测定扫描速率为0.01 V/s的动电位曲线。对在阳极表面冻结的熔体样品进行XRD分析,并在实验后对阳极进行SEM分析,以研究合金表面形成的氧化皮的物相。所有阳极材料的稳态电位都在2.30~2.50 V(vs Al/AlF3)范围内。根据动电位极化获得的数据计算阳极的腐蚀速率。结果表明,经预氧化的阳极比未经预氧化的阳极具有更低的腐蚀速率。  相似文献   

6.
The dissolution of pure copper, 90 Cu10 Ni and 60 Cu40 Ni in hydrochloric acid in the concentration range 1/3-3 M was studied using potentiodynamic sweeps and steady-state potential measurements on a rotating disc electrode. Some results are also reported for rotating ring-disc experiments. In the active region copper dissolves as a cuprous species from all three alloys, and in the passive region a film of cuprous chloride formed by a solid state mechanism is probably responsible for passivity. At higher anodic potential cupric species are produced. The alloy behaviour cannot be represented by a simple linear combination of the two partial currents.In the case of the 6040 alloys, behaviour consistent with a partially blocked anode has been observed at higher current densities.  相似文献   

7.
碳化对模拟混凝土孔溶液中HRB335钢腐蚀行为的影响   总被引:1,自引:0,他引:1  
应用电化学阻抗谱、循环伏安与动电位极化等方法研究了碳化后模拟混凝土孔溶液pH值的变化对钢筋腐蚀电化学行为的影响.结果表明,随着pH值的下降钢筋表面钝化膜的稳定性与耐蚀性不同程度地降低.当模拟液pH值为12.5与11.5时,钝化膜的稳定性处于因pH值降低导致的钝化膜溶解与表面沉积物CaCO3或含钙氧化物CaFe2O4等耐...  相似文献   

8.
《Corrosion Science》1987,27(8):785-801
The composition and thickness of the oxide/hydroxide film that forms on pure aluminum surfaces that are polarized in 0.05 M Na2SO4 in acidic, near-neutral, and alkaline solutions have been characterized using XPS. The results of this effort have been plotted on surface behavior diagrams to follow the evolution of the surface film during polarization. Although a thin layer of gibbsite [Al(OH)3] is often indicated to be the film that forms and protects aluminum from corroding in near-neutral pH solutions after 10–20 h of exposure, the composition of the film that initially forms on Al after a short period of time (1 h) was actually closer to boehmite (AlOOH), the oxyhydroxide phase. This film generally grows thicker during either anodic or cathodic polarization in both the pH 7 and pH 10 solutions. For the solution at pH 2, the air-formed film dissolves to a very thin oxyhydroxide film that is replaced by an oxide film, Al2O3, during anodic polarization. The growth of the oxyhydroxide film at each pH during cathodic polarization is attributed to the local buildup of hydroxyl ions at the surface of the working electrode.  相似文献   

9.
During anodising of Al-Cu alloys, copper species are incorporated into the anodic alumina film, where they migrate outward faster than Al3+ ions. In the present study of an Al-1at.% Cu alloy, the valence state of the incorporated copper species was investigated by X-ray photoelectron spectroscopy, revealing the presence of Cu2+ ions within the amorphous alumina film. However, extended X-ray irradiation led to reduction of units of CuO to Cu2O, probably due mainly to interactions with electrons from the X-ray window of the instrument and photoelectrons from the specimen. The XPS analysis employed films formed on thin sputtering-deposited alloy/electropolished aluminium specimens. Such an approach enables sufficient concentrations of copper species to be developed in the anodic film for their ready detection.  相似文献   

10.
The corrosive behaviour of Cu-Al-Ni shape memory alloy in deaerated 0.5 M NaCl solution at 20 °C was studied by means of open circuit potential measurements, linear polarization, potentiodynamic polarization measurements, cyclic voltammetry and electrochemical impedance spectroscopy measurements. The electrode surface was examined by light microscope, SEM, XRD and EDX methods. The polarization measurements have shown that corrosive behaviour of Cu-Al-Ni alloy in NaCl solution was dominated by the Cu component. The results of impedance measurements at open circuit potential have shown that the overall impedance of the system increases with immersion time due to continuous growth of the passive film on the alloy surface. The XRD and EDX analysis showed the presence of copper, aluminium and nickel compounds, Cu-oxides and Cu-chlorides on alloy surface.  相似文献   

11.
The influence of Cu addition on the corrosion resistance of low-alloy steel in an acid-chloride solution was investigated by electrochemical methods, such as potentiodynamic polarization tests and an electrochemical impedance spectroscopy (EIS). The XPS analysis of the corroded surfaces indicated the formation of protective Cu2O and Cu(OH)2 layers on the surface. The formation of Cu products on the surface reduced the uniform corrosion rate of the steel, but promoted localized corrosion due to the galvanic interaction between the covered areas of copper oxide/hydroxide and the uncovered areas on the surface of steel.  相似文献   

12.
The potentiodynamic polarization curve of copper in chloride solution The potentiodynamic curve obtained under conditions of high rate polarization does not only represent the dissolution of copper but also the redox reactions taking place in this rather complex system. The first part of the curve characterizes the anodic reaction resulting in the formation of CuCl?2 and CuCl; it can therefore be used for studying spontaneous corrosion. In addition, the fast polarization enables the influence of various factors to be assessed and fast reactions to be recognized which are not registered under conditions of slow polarization. It should be possible on this basis to study e.g. the influence resulting from structural changes in copper alloys.  相似文献   

13.
High-entropy alloys (HEAs) are a newly developed family of multi-component alloys. The potentiodynamic polarization and electrochemical impedance spectroscopy of the AlxCrFe1.5MnNi0.5 alloys, obtained in H2SO4 and NaCl solutions, clearly revealed that the corrosion resistance increases as the concentration of aluminium decreases. The AlxCrFe1.5MnNi0.5 alloys exhibited a wide passive region, which extended >1000 mV in acidic environments. The Nyquist plots of the Al-containing alloys had two capacitive loops, which represented the electrical double layer and the adsorptive layer. SEM micrographs revealed that the general and pitting corrosion susceptibility of the HEAs increased as the amount of aluminium in the alloy increased.  相似文献   

14.
Copper thin films were deposited on oxidized silicon at a substrate temperature of 70 °C and 150 °C using EB-PVD technique. The morphology and crystal orientation of the deposited film were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Corrosion behavior of films was studied through electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, immersion test, and cathodic chronopotentiography. Additionally, the crystalline structure of corroded samples immediately after polarization was examined by XRD. Corrosion current density for copper deposits was higher than copper sheet by polarization tests, while the data obtained by the EIS technique emphasized higher corrosion current density for copper sheet. However there was a conflict between polarization and EIS data, the other results obtained by immersion and cathodic chronopotentiography tests proved that the corrosion resistance of copper deposits was higher than copper sheet in the same alkaline media, which can be attributed to chemical composition and higher thickness of the passive layer formed on copper deposits. On the other hand, breakdown potential (Ebp) for copper sheet was about 0.3 VSCE, while a distinct Ebp was not found for copper deposits. This was a sign of higher stability of the passive layer formed on copper deposits. The XRD patterns of samples immediately after polarization showed a higher content of Cu(OH)2 on copper deposits in comparison with copper sheet. The stable morphology formed on the surface of copper after polarization was monoclinic CuO, which is assumed to have a significant effect on copper protection in alkaline media. This morphology was more compact on copper deposits in comparison with copper sheet. This was due to higher ability of deposits to react with hydroxyl ions.  相似文献   

15.
Cerium (and aluminium) oxide layers were formed on magnesium and its alloys (AZ91) by chemical surface treatment with or without subsequent annealing. The corrosion behaviour modifications provided by the formation of these surface films were studied by means of different electrochemical and surface analysis techniques. The electrochemical behaviour, studied in sodium sulphate (Na2SO4) solution, showed (i) a marked shift of the corrosion potential towards more positive values, (ii) a slight inhibition of the cathodic reaction and (iii) a significant decrease of the anodic dissolution current. X‐ray photoelectron spectroscopy (XPS) was used for the characterisation of the composition of the deposited films and of the changes in the film composition during the electrochemical corrosion tests. The components of some oxide films are cerium dioxide (CeO2), aluminium oxide (Al2O3) and aluminium hydroxide (Al(OH)3). Other metallic mixed oxide films were obtained as a function of the solution composition. Very little (or no) change in the oxide film composition during the cathodic and anodic polarization experiments was observed from XPS measurements. Chemical treatment provides thick and moderately adherent protective oxide films. Annealing under oxygen further improves the beneficial effect of the chemical treatment.  相似文献   

16.
《Intermetallics》2005,13(1):55-60
The corrosion behaviour of two Mg–Al–Er alloys with increasing content of erbium (Mg95Al3Er2 and Mg95Al2Er3) has been evaluated in borate buffer solution and compared with that of the commercial AM60 alloy (Mg–6.0Al–0.13Mn, at%) employed in the automotive industry. Scanning electron microscopy and quantitative electron probe microanalysis were used to characterize the samples, prior and after the electrochemical tests. The experiments were carried out in 0.05 M H3BO3+0.075 M Na2B4O7 solution with pH=8.4. Anodic polarization curves were recorded, potentiostatic current decay transients were obtained at anodic potentials and the polarization resistance was determined. The alloys show similar microstructures characterized by a Mg-based solid solution, surrounded by a very small amount of a secondary phase. The alloys investigated exhibit enhanced corrosion resistance with respect to AM60 alloy. Electrochemical investigations reveal that the surface layers formed on the erbium-containing alloys provide a better protective effectiveness than the magnesium hydroxide or aluminium hydroxide layer formed on AM60 in borate buffer solution. Based on preliminary analysis, the incorporation of erbium in the Mg(OH)2 lattice is believed to be responsible for the improved corrosion behaviour of the Mg–Al–Er alloys.  相似文献   

17.
The anodic formation of Cu(I) and Cu(II) oxides on polycrystalline copper in a deaerated alkaline solution is studied using the technique of the synchronous recording of transients of the photocurrent and polarization current. The oxide formation in a currentless mode is analyzed via the synchronous recording of photopotential and corrosion potential. It is found that copper is susceptible to corrosion oxidation due to traces of dissolved oxygen with the formation of a Cu(I) oxide. The preliminary formation of the underlayer of anodic Cu(I) oxide on copper hinders its further corrosion oxidation. It is confirmed that copper oxides Cu2O and CuO, which appear on copper in both anodic and corrosion modes of formation, are p-type semiconductors. The initial stage of anodic oxidation of copper is characterized by the formation of an intermediate compound of Cu(I), possibly CuOH, which exhibits n-type conductivity. A film of Cu(I) oxide is thin and has a band gap of 2.2 eV for indirect optical transitions. Anodic polarization in the range of potentials of CuO formation leads to the formation of a thicker oxide film, which is a mixture of Cu(I) and Cu(II) oxides.  相似文献   

18.
An ultrathin film of two-dimensional polymer was prepared on a passivated iron electrode by modification of a 16-hydroxyhexadecanoate ion self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. This film prevented passive film breakdown examined by potentiodynamic anodic polarization of the coated electrode in the borate buffer solution containing 0.1 M of Cl. Neither current spikes nor the pitting potential was observed in the passive and transpassive regions of polarization curve. The anodic current density was decreased in these regions markedly, implying hindrance to permeation of Cl and water through the film. Structure of the film was clarified by X-ray photoelectron and FTIR reflection spectroscopies and contact angle measurement with a drop of water. Electron-probe microanalysis of the passivated surface coated with the film after anodic polarization scanning up to the transpassive region revealed that the polymer film prevents pit initiation by an attack on the passive film with Cl.  相似文献   

19.
Enrichment of copper beneath amorphous anodic films on relatively dilute, solid-solution Al–Cu alloys is necessary before copper can be oxidized and incorporated into the oxide layer. A similar enrichment arises during electropolishing, which also develops an amorphous oxide. In these cases, external polarization is applied, usually generating a relatively high oxidation rate. In contrast, enrichment behaviour at the corrosion potential has received less attention. The present study examines the corrosion of Al–Cu alloys, containing up to 6.7 at.% Cu, in 0.1 M sodium hydroxide solution at 293 K. Copper is again found to enrich in the alloy, similarly to behaviour with anodic polarization. However, following enrichment, discrete copper-rich particles appear to be generated in the corrosion product. These are suggested to be nanoparticles of copper, since the corrosion potentials of the alloys are low relative to that required for oxidation of copper. The corrosion rate increases with increase of both time and copper content of the alloy, probably associated with a greater cathodic activity due to an increasing number of nanoparticles. The corrosion proceeds with loss of aluminium species to the sodium hydroxide solution, but with retention of copper in the layer of hydrated alumina corrosion product.  相似文献   

20.
The electrochemical behaviour of the Zr55Cu30Al10Ni5 amorphous alloy prepared as cylindrical bulk samples with 7 mm diameter has been investigated. Cyclic potentiodynamic polarization measurements carried out on the cross section areas of the samples in air-saturated and nitrogen-purged sulphate and hydroxide solutions, respectively, show that the alloy rapidly forms protective passive layers with low electron conductivity which are stable in a wide pH-value and potential range. Anodic layer formation reactions are characterized. In chloride containing electrolytes a pitting corrosion susceptibility of the bulk material exists. The effect of crystalline defects as active sites for the initiation of localized corrosion processes is critically discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号