首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
基于空间自适应Bayesian缩减的NSCT域图像去噪方法   总被引:1,自引:0,他引:1  
孙强  高勇  焦李成 《计算机应用》2010,30(8):2080-2084
提出了一种基于空间自适应Bayesian缩减的NSCT域图像去噪方法。该方法运用了广义高斯分布对NSCT域图像的子带系数进行建模,并通过构造各向异性的椭圆窗口来描述各个子带内系数的局部背景特性,从而建立了NSCT域空间自适应Bayesian缩减机制的图像去噪方法。通过图像去噪实验验证了所提出方法的有效性。同时,与4种具有平移不变性的Contourlet去噪方法做了对比,进一步证实了所提出方法的优良去噪性能。  相似文献   

2.
针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像受到相干斑噪声的干扰,严重影响了SAR图像的后续处理的问题,提出一种在非下采样轮廓变换(Nonsubsampled Contourlet Transform,NSCT)域将中值滤波和邻域收缩法相结合的SAR图像去噪算法。该算法对原始SAR图像进行NSCT分解,得到低频子带和高频子带图像,对低频子带使用中值滤波处理以去除低频子带中的低频噪声,利用NSCT分解系数之间的相关性,使用邻域收缩法对子带图的系数进行收缩,以消除高频子带中的高频噪声。实验证明,该算法与小波域邻域收缩去噪算法和NSCT硬阈值去噪算法相比,在去噪性能和视觉效果方面均有所提高,在消除噪声同时可以较好地保护纹理细节信息。  相似文献   

3.
提出一种新的结合非下采样Contourlet变换(NSCT)和主分量分析(PCA)的图像自适应阈值去噪方法。通过PCA估计NSCT域中的噪声能量,并与NSCT系数的领域信息相结合,构造出自适应阈值对遥感图像进行去噪。仿真实验结果表明,提出的方法与Contourlet硬阈值,基于Contourlet的图像PCA和NSCT硬阈值去噪方法相比能够有效去除遥感图像的高斯噪声,较完整地保持图像的边缘等细节信息,提高了图像的峰值信噪比,图像视觉效果也有明显改善。  相似文献   

4.
5.
为在去噪时能较好保留图像边缘特征,并针对Coutourlet变换缺乏平移不变性和传统阈值法的不足,提出了一种基于边缘检测的非子采样Contourlet变换自适应阈值(AT-NSCT)图像去噪方法.结果不仅能消除因Contourlet变换缺乏平移不变性而产生的图像失真,而且有效地保留了图像的边缘信息,提高了去噪后图像峰值信噪比,视觉效果更好.  相似文献   

6.
非下采样Contourlet域GCV准则SAR图像去噪*   总被引:1,自引:1,他引:1  
首先对SAR图像作非下采样Contourlet分解,充分考虑其系数统计特性,给出非下采样Contourlet域GCV准则,对每个分解层的各个子带作多层阈值估计和软阈值收缩处理,进而详细探讨分解层数和方向分解数对NSCT性能的影响。实验结果表明,该方法从视觉效果和客观衡量指标两方面都取得了比较理想的效果。  相似文献   

7.
提出了一种基于非下采样Contourlet变换的自适应图像去噪方法。首先对噪声图像进行非下采样Contourlet变换,得到各个尺度各个方向子带的系数,再根据该系数的能量自适应地调整去噪阈值。实验表明,与Contourlet多尺度阈值去噪、Contourlet自适应阈值去噪相比,该方法在保留图像边缘细节的同时,能提高图像的PSNR值,减少了Gibbs现象。  相似文献   

8.
基于NSCT阈值萎缩法的遥感图像去噪   总被引:2,自引:0,他引:2       下载免费PDF全文
针对图像去噪过程中产生的伪吉布斯现象以及峰值信噪比(PSNR)较低等问题,提出一种基于非下采样Contourlet变换(NSCT)阈 值萎缩法的遥感图像去噪算法。根据NeighShrink去噪算法中尺度内系数的邻域系数相关性,以及BiShink去噪算法中不同尺度间系数的相关性,对图像进行去噪,利用NSCT的平移不变性,抑制小波去噪中的伪吉布斯现象。实验结果证明,采用该算法去噪后的图像PSNR较高,视觉效果较优。  相似文献   

9.
为更好地对图像进行稀疏表示,以改善去噪效果,提出一种傅里叶变换与非下采样轮廓波变换(NSCT)相结合的自适应阈值去噪算法。在傅里叶域中对含噪图像去噪,在NSCT域中利用分层噪声估计的贝叶斯阈值算法,结合多尺度多方向的能量阈值修正方案自适应地滤除剩余噪声。实验结果表明,该算法的去噪性能较好。  相似文献   

10.
利用非下采样Contourlet变换(NSCT)平移不变性、多分辨率、多方向的优点,提出一种基于尺度相关与阈值去噪相结合的非下采样Contourlet变换图像去噪方法。首先对噪声图像进行非下采样Contourlet变换,得到各个尺度各个方向子带的系数,然后采用相关系数归一的方法,结合Bayesian自适应阈值来达到更好的去噪效果。仿真实验表明,该方法在提高去噪后图像的峰值信噪比的同时,有效保留了图像的纹理信息,避免伪吉布斯现象,改善了图像的视觉效果。  相似文献   

11.
SAR图像的NSCT域自适应收缩相干斑抑制   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于Nonsubsampled Contourlet(NSCT)变换域自适应收缩的SAR图像相干斑抑制算法。首先将SAR图像分解至NSCT域,其次对NSCT系数进行Pizurica自适应收缩。利用NSCT变换的良好的方向选择性及平移不变性,同时结合Pizurica自适应收缩的方向空间相关性及其局部噪声度量,自适应地得到各方向的高频子带系数对应的收缩因子,修正NSCT系数,最终将修正后的子带系数通过NSCT逆变换获得经过斑点噪声抑制的图像。实验结果表明,与小波域软阈值和Contourlet域软阈值算法相比,该算法在有效抑制SAR图像斑点噪声的同时能更好、更清晰地保持图像的边缘细节特征。  相似文献   

12.
刘洋  张国军 《计算机仿真》2022,39(1):172-176
针对遥感图像受噪声影响导致质量较低的问题,提出了基于NSCT变换的遥感图像快速自适应去噪方法.将Gibbs效应添加至Contourlet变换的图像处理环节,利用非下采样拉普拉斯金字塔与方向滤波器组构建NSCT变换.根据NSCT变换后遥感图像信号能量汇聚至小部分变换系数的特征,利用硬阈值快速去噪方法和NSCT变换系数邻域...  相似文献   

13.
陈建军  田逢春  李灿 《计算机工程》2011,37(12):204-205
提出一种基于非下采样Contourlet变换(NSCT)阈值和P-Laplace扩散的图像降噪方法。通过NSCT阈值的平移不变性得到初步降噪图像,保留阈值变换后需要置0的高频部分,利用P-Laplace算子对其进行扩散,并将得到的扩散图像融合到阈值降噪图像中,从而提高降噪图像的质量。数值结果表明,该方法能有效保持原图像的纹理细节,减少图像降噪的吉普斯震荡现象。  相似文献   

14.
基于Contourlet域主成分分析的SAR图像去噪   总被引:1,自引:0,他引:1  
相干斑噪声是合成孔径雷达图像所固有的,并且严重降低了图像的可编译性,影响了后续图像分割,特征提取,目标分类和识别等工作.因此,SAR图像的相干斑去除问题一直是SAR图像应用研究的重要问题之一.针对SAR图像噪声去除问题,提出了一种基于Contourlet多尺度分解域主成分分析的SAR图像去噪新方法,并且简要归纳了已有的SAR图像去噪方法.方法首先对源图像进行Contourlet分解,在不同频段的子带图像中,利用主成分分析方法进行能量保持,用重构图像来进行子带去噪,最后通过Contourlet逆变换得到去噪之后的图像.在SAR图像上的实验结果表明,方法不仅较好地保持了图像的纹理和细节特征,且信噪比也较高.  相似文献   

15.
16.
合成孔径雷达(SAR)图像产生的相干斑噪声是一种乘性噪声,严重影响SAR图像的质量.本文提出一种新的极化SAR图像的去噪方法,该方法对极化SAR图像进行自适应Bandelets阈值方法,阈值采用BayesShrink软阈值方法,将其应用于自适应Bandelets系数.通过实验对比,证实此法与小波阈值去噪相比,能够更好地...  相似文献   

17.
为进一步提升支持向量机水印算法鲁棒性,提出基于支持向量机的NSCT域自适应图像水印算法。主要思想是根据图像自身特征生成自适应嵌入水印序列,利用模糊核聚类和支持向量机对NSCT低频系数进行分类,选取适合嵌入水印的低频系数,然后利用支持向量机建立NSCT邻域系数的关系模型,自适应完成水印嵌入。算法具有良好的不可感知性、安全性,并通过嵌入自适应水印达到全盲水印检测。实验结果表明,提出算法对高斯噪声、椒盐噪声、低通滤波、中值滤波、均值滤波、JPEG、旋转、平移和尺寸缩放有很强的鲁棒性。  相似文献   

18.
小波阈值去噪方法是众多图像去噪方法的理想之选,其算法简单,计算量小,得到了广泛的应用.在小波阈值去噪法中,单一阈值函数不能在每级尺度上将信号与噪声做很好的分离.针对这种情况,本文提出了一种新的阈值函数,仿真结果表明,这种新的阈值函数能更好地保留图像边缘信息,在视觉效果和信噪比上优于单一阈值法.  相似文献   

19.
基于粒子群优化的Shearlet自适应图像去噪   总被引:1,自引:0,他引:1  
研究Shearlet变换域图像去噪阈值选取的问题,提出Shearlet变换域图像去噪自适应阈值选取方法.该方法根据Shear-let变换域不同尺度和方向系数的分布特性,采用粒子群优化算法自适应地确定各尺度和方向的最优阈值,实现基于图像内容的自适应去噪.仿真实验表明,该方法能有效滤除图像的噪声,较好地保留图像的边缘信息.同时,去噪后图像具有更高的峰值信噪比(PSNR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号