首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Decapod crustaceans have a well-defined olfactory system characterised by a set of chemosensitive sensilla grouped together in an array (the olfactory organ) on their antennules. Olfactory receptor neurons in the olfactory organ project exclusively to, and terminate in, cone-shaped olfactory glomeruli in a discrete neuropil in the brain, the olfactory lobe. The olfactory organ appears to be the only afferent input to the olfactory lobe, making the system convenient for the study of its development and growth. The progression of development of the olfactory system is a continuum and can be traced from the first appearance of peripheral receptor cells and central stem cells through to the construction of the tracts and neuropils that constitute the adult system. Cell proliferation leading to the production of peripheral and central olfactory neurons can be observed with mitotic markers in both embryonic stages and in postembryonic growth. Cell proliferation in the olfactory system in crayfish persists throughout the lives of the animals and can be modulated by manipulating the living conditions imposed on growing animals. Large serotonergic neurons that are associated with the olfactory system may play a role in the regulation of cell proliferation.  相似文献   

2.
The extrabulbar olfactory projections (EBOP) is a collection of nerve fibers that originate from primary olfactory receptor neurons. These fibers penetrate into the brain, bypassing the olfactory bulbs (OBs). While the presence of an EBOP has been well established in teleosts, here we morphologically characterize the EBOP structure in four species each with a different morphological relationship of OB with the ventral telencephalic area. Tract‐tracing methods (carbocyanine DiI/DIA and biocytin) were used. FMRFamide immunoreactive nervus terminalis (NT) components were also visualized to define any neuroanatomical relationship between the NT and EBOP. Unilateral DiI/DiA application to the olfactory chamber stained the entire olfactory epithelium, olfactory nerve fibers, and ipsilateral olfactory bulb. Labeled primary olfactory fibers running ventromedially as extrabulbar primary olfactory projections reached various regions of the secondary prosencephalon. Only in Moenkhausia sanctaefilomenae (no olfactory peduncle) did lipophilic tracer‐labeled fibers reach the ipsilateral mesencephalon. The combination of tracing techniques and FMRFamide immunohistochemistry revealed a substantial overlap of the label along the olfactory pathways as well as in the anterior secondary prosencephalon. However, FMRFamide immunoreactivity was never colocalized in the same cellular or fiber component as visualized using tracer molecules. Our results showed a certain uniformity in the neuroanatomy and extension of EBOP in all four species, independent of the pedunculate feature of the OBs. The present study also provided additional evidence to support the view that EBOP and FMRFamide immunoreactive components of the NT are separate anatomical entities. Microsc. Res. Tech. 78:268–276, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
This review intends to integrate recent data from the Drosophila olfactory system into an up-to-date account of the neuronal basis of olfaction. It focuses on (1) an electron microscopic study that mapped a large proportion of fruitfly olfactory sensilla, (2) large-scale electrophysiological recordings that allowed the classification of the odor response spectra of a complete set of sensilla, (3) the identification and expression patterns of candidate odorant receptors in the olfactory tissues, (4) central projections of neurons expressing a given odorant receptor, (5) an improved glomerular map of the olfactory center, and (6) attempts to exploit the larval olfactory system as a model of reduced cellular complexity. These studies find surprising parallels between the olfactory systems of flies and mammals, and thus underline the usefulness of the fruitfly as an olfactory model system. Both in Drosophila and in mammals, odorant receptor neurons appear to express only one type of receptor. Neurons expressing a given receptor are scattered in the olfactory tissues but their afferents converge onto a few target glomeruli only. This suggests that in both phyla, the periphery is represented in the brain as a chemotopic map. The major difference between mammals and fruitflies refers to the numbers of receptors, neurons, and glomeruli, which are largely reduced in the latter, and particularly in larvae. Yet, if activated in a combinatorial fashion, even this small set of elements could allow discrimination between a vast array of odorants.  相似文献   

4.
Individual glomeruli in the mammalian main olfactory bulb represent a single or at most a few types of odorant receptors. Thus the physical arrangement of glomeruli at the surface of the olfactory bulb can be viewed as a sensory map representing approximately 1,000 types of odorant receptors. This review summarizes the recent advance of the knowledge regarding the spatial organization of the sensory map in the main olfactory bulb. Recent studies show that individual olfactory bulbs contain dual sensory maps, one in the lateral hemisphere and the other in the medial hemisphere of the bulb. The tracings of selective subsets of olfactory axons to their target glomeruli in the olfactory bulb show that glomeruli are parceled into large zones or bands. The spatial arrangement of these zones and bands are stereotypical and conserved across individual mice. Optical imaging studies show that glomeruli in the most rostrodosal zone, zone I, are further parceled into smaller functional domains, and suggest that odorant receptors having a common or similar molecular feature receptive site are grouped together and represented by glomeruli within the functional domain. The possible relation between the functional domain organization and the subjectively perceived odor quality (olfactory submodality) is reviewed.  相似文献   

5.
The avian pineal organ represents a transitional type between a photosensory organ of lower vertebrates and the endocrine gland of mammals and shows remarkable changes in its innervation and structure during ontogeny. In the avian pineal organ the progressive reduction of the pinealofugal component and the spectacular increase in pinealopetal sympathetic innervation occur in parallel. In domestic fowl the number of intrapineal AChE-positive (afferent) neurons decreases rapidly during ontogenetic development, whereas the sympathetic innervation becomes more prominent. Furthermore, the end vesicle of the pineal organ is an anatomical entity fully separated from the brain in the adult domestic fowl, as observed in some mammalian pineals. The avian pineal organ contains several types of photoreceptors with different photopigments and the synthesis of melatonin, the pineal hormone, is controlled by light. Immunoreactivity for photopigments is reduced during the posthatching development of chicken, whereas neuron-specific enolase (NSE)-immunoreactive pinealocytes increase remarkably in number in the end-vesicle of the domestic fowl with age, followed by a gradual expansion toward the proximal portion. NSE is the most acidic isoenzyme of the glycolytic enzyme enolase and is useful as a cytoplasmic marker of neurons and neuroendocrine tissue. The above-mentioned findings reflect the sequence of changes leading from pineal sense organs to pineal gland. The demonstration of melatonin receptors in a variety of avian peripheral tissues suggest a possible direct action of melatonin on the physiological functions of different organ systems in response to internal and external stimuli.  相似文献   

6.
We used scanning (SEM) and transmission (TEM) electron microscopy to examine ultrastructural changes in the olfactory epithelium (OE) of rainbow trout following unilateral olfactory nerve section. Both ciliated receptor cells (CRC) and microvillar receptor cells (MRC) degenerated and subsequently differentiated from unidentified precursor cells. The following changes took place in fish that were held at 10 degrees C at the stated period following olfactory nerve section: on day 7, MRC and CRC contained intracellular vacuoles; on day 12, the olfactory knobs appeared disrupted; by day 26, olfactory receptor cells were absent from the OE; on day 42, there were receptor cell bodies and a few CRC with short cilia at the apical surface; and on day 55, a small number of both CRC and MRC had differentiated. By day 76, both CRC and MRC repopulated the OE. Degenerative changes in the cytoplasm of the sustentacular cells (SC) and ciliated nonsensory cells (CNC) were observed in the first 26 days following olfactory nerve section, but these cells remained intact throughout the experiment. The degeneration and subsequent differentiation of CRC and MRC supports and extends previous observations that both cell types are olfactory receptor neurons with axons that extend along the olfactory nerve to the olfactory bulb.  相似文献   

7.
The effect of manganese toxicity on the ultrastructure of the olfactory bulb was evaluated. Male albino mice were injected intraperitoneally with MnCl2 (5 mg/Kg/day) five days per week during nine weeks. The control group received NaCl (0.9%). The olfactory bulbs of five mice from each group were processed for transmission electron microscopy after 2, 4, 6 and 9 weeks of manganese treatment. On week 2, some disorganization of the myelin sheaths was observed. After 4 weeks, degenerated neurons with dilated cisternae of rough endoplasmic reticulum and swollen mitochondria appeared. A certain degree of gliosis with a predominance of astrocytes with swollen mitochondria, disorganization of the endomembrane system, dilation of the perinuclear cisternae and irregularly shaped nuclei with abnormal chromatin distribution were observed after 6 weeks. Some glial cells showed disorganization of the Golgi apparatus. On week 9, an increase in the number of astrocytes, whose mitochondrial cristae were partially or totally erased, and a dilation of the rough endoplasmic reticulum were found. Neurons appear degenerated, with swollen mitochondria and a vacuolated, electron dense cytoplasm. These changes seem to indicate that the olfactory bulb is sensitive to the toxic effects of manganese.  相似文献   

8.
Progress in our understanding of olfactory receptor physiology has progressed greatly over the past 10 years. It has become clear that many anatomical and molecular features of the peripheral aspect of the olfactory system have remained highly conserved across diverse species. Yet, this structure is responsible for conveying a wide variety of information about the environment that is necessary to the successful location of food, mates, and avoidance of danger, and it is thus not surprising that specializations have also evolved to suit the differing needs of different species. While the basic anatomical features reflect those of other mammals, functional studies of human olfactory receptor neurons have revealed physiological features both similar to and differing from those of other mammalian species. This review presents an overview of both the anatomical and physiological data describing the cell and molecular biology of the peripheral human olfactory system and how it functions in health and disease.  相似文献   

9.
Role of nerve growth factor in the olfactory system   总被引:1,自引:0,他引:1  
Olfactory neurons are unique in the mammalian nervous system because of their capacity to regenerate in adult animals. It has been shown that olfactory receptor cells located in the olfactory epithelium are replaced on a continuous basis and in response to injury throughout the life span of most species. NGF, which is one of the neurotrophic factors, is present in many areas of the central and peripheral nervous system. It has been shown that NGF in the olfactory bulb plays a role in the survival of cholinergic neurons in the horizontal limb of the diagonal band (HDB). Recent studies of NGF in the olfactory bulb suggest that it is involved in the development, maintenance, and regeneration of olfactory receptor cells. In this study, we review reports examining the relationship between NGF in the olfactory bulb and neuronal regeneration and development in the mammalian olfactory systems. Low- and high-affinity NGF receptor immunoreactivity is markedly expressed during regeneration and at different stages of development in the mouse olfactory system. This level of immunoreactivity is no longer present after completion of regeneration and at maturation. Other findings indicate that NGF injected into the olfactory bulb is transported retrogradely to the olfactory epithelium. It has also been shown that continuous anti-NGF antibody injection into the olfactory bulb causes degeneration and olfactory dysfunction. Administration of NGF directory into nasal cavity results in an increase in the expression of olfactory marker protein within the olfactory epithelium in axotomized rats. These findings suggested that the presence of NGF in the olfactory bulb plays an essential role in regeneration, maintenance, and development in the olfactory system of mammals.  相似文献   

10.
Morphology of olfactory epithelium in humans and other vertebrates.   总被引:4,自引:0,他引:4  
Human olfactory epithelium is similar in organization and cell morphology to that of most vertebrate species. The epithelium has a pseudostratified columnar organization and consists of olfactory neurons, supporting and basal cells. Near the mucosal surface there are also microvillar cells. These cells have neuron-like features and may be chemoreceptors. Human olfactory epithelium is not a uniform sensory sheet. Patches of non-sensory tissue often appear in what was thought to be a purely olfactory region. The significance of these patches has not been determined, but they could reflect exposure to environment agents or changes that occur during the normal aging process. In order to better understand the human olfactory system, further knowledge of the normal structure is necessary. This review addresses the morphology of the human olfactory epithelium and the remarkable plasticity of the vertebrate olfactory system.  相似文献   

11.
The mucus at the surface of the olfactory mucosa constitutes the milieu in which perireceptor events associated with olfactory transduction occur. In this review, the ultrastructure of olfactory mucus and of the secretory cells that synthesize and secrete olfactory mucus in the vertebrate olfactory mucosa is described. Bowman's glands are present in the olfactory mucosa of all vertebrates except fish. They consist of acini, which may contain mucous or serous cells or both, and ducts that traverse the olfactory epithelium to deliver secretions to the epithelial surface. Sustentacular cells are present in the olfactory epithelium of all vertebrates. In fish, amphibia, reptiles, and birds, they are secretory; in mammals, they generally are considered to be "non-secretory," although they may participate in the regulation of the mucous composition through micropinocytotic secretion and uptake. Goblet cells occur in the olfactory epithelium of fish and secrete a mucous product. Secretion from Bowman's glands and vasomotor activity in the olfactory mucosa are regulated by neural elements extrinsic to the primary olfactory neurons. Nerve fibers described in early anatomical studies and characterized by immunohistochemical studies contain a variety of neuroactive peptides and have several targets within the olfactory mucosa. Ultrastructural studies of nerve terminals in the olfactory mucosa have demonstrated the presence of adrenergic, cholinergic and peptidergic input to glands, blood vessels, and melanocytes in the lamina propria and of peptidergic terminals in the olfactory epithelium. The neural origins of the extrinsic nerve fibers and terminals are the trigeminal, terminal, and autonomic systems.  相似文献   

12.
The primary olfactory pathway is an elegant and simple system in which to study neurogenesis and neuronal plasticity because of the simple fact that olfactory receptor neurons (ORNs) are continually generated throughout the adult lifetimes of vertebrates. Thus, neuronal birth, differentiation, survival, axon pathfinding, target recognition, synapse formation, and cell death are developmental events that can be examined in the mature olfactory epithelium (OE). Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3, and 4/5) are a family of bioactive peptides that exert their effects by interacting with high- and low-affinity receptors on the surfaces of responsive cells, and have been implicated in several stages of neuronal development throughout the central and peripheral nervous system (CNS and PNS). There has been significant interest within the olfactory community as to how these multifunctional peptides might regulate the cycle of degeneration and regeneration of olfactory receptor neurons. The focus of this review is to highlight what is known about the actions of neurotrophins in the primary olfactory pathway, and to pinpoint future directions that will enable us to further understand their role in olfactory receptor neuron development and turnover.  相似文献   

13.
The definition of the terminal nerve has led to considerable confusion and controversy. This review analyzes the current state of knowledge as well as diverging opinions about the existence, components, and definition of terminal nerves or their components, with emphasis on lampreys and lungfishes. I will argue that the historical terminology regarding this cranial nerve embraces a definition of a terminal nerve that is compatible with its existence in all vertebrate species. This review further summarizes classical and more recent anatomical, developmental, neurochemical, and molecular evidence suggesting that a multitude of terminalis cell types, not only those expressing gonadotropin-releasing hormone, migrate various distances into the forebrain. This results in numerous morphological and neurochemically distinct phenotypes of neurons, with a continuum spanning from olfactory receptor-like neurons in the olfactory epithelium to typical large ganglion cells that accompany the classical olfactory projections. These cell bodies may lose their peripheral connections with the olfactory epithelium, and their central projections or cell bodies may enter the forebrain at several locations. Since "olfactory" marker proteins can be expressed in bona fide nervus terminalis cells, so-called extrabulbar "olfactory" projections may be a collection of disguised nervus terminalis components. If we do not allow this pleiomorphic collection of nerves to be considered within a terminal nerve framework, then the only alternative is to invent a highly species- and stage-specific, and, ultimately, thoroughly confusing nomenclature for neurons and nerve fibers that associate with the olfactory nerve and forebrain.  相似文献   

14.
Even though the housefly Musca domestica shows clear circadian rhythms in its behavioural and physiological processes, a circadian pacemaker system controlling these rhythms has not yet been described morphologically in this species. In M. domestica, neurons immunoreactive to pigment-dispersing factor (PDF), a neurotransmitter/neuromodulator of circadian information arising from a circadian clock and transmitted to target cells, are similar in their number and distribution to the PDF neurons of Drosophila melanogaster. In D. melanogaster these neurons co-localize PER protein and have been identified as clock neurons in that species. Here we report PDF-immunoreactive cells in the housefly's brain during postembryonic development in the larval and pupal stages, as well as in the adult fly soon after eclosion. In the housefly's brain, there are three groups of PDF-immunoreactive neurons: two groups with small (sPDFMe) and large (lPDFMe) cell bodies in the proximal medulla of the optic lobe; and one group in the dorsal protocerebrum (PDFD). Three out of four sPDFMe can be detected during the first hour of larval development, but the fourth sPDFMe is observed in the larva only from 48 hours after hatching, along with five lPDFMe neurons, seen first as two subgroups, and three out of four PDFD neurons. During postembryonic development these neurons show changes in their structure and immunoreactivity. New PDF neurons are observed during pupal development but these neurons mostly do not survive into adulthood. In the adult fly's brain, the PDF neurons have also been examined in double-labelled preparations made with a second antibody directed against the product of one of several clock genes: period (per), timeless (tim), or cryptochrome (cry). Among them, only immunoreactivity to CRY-like protein has been detected in the brain of M. domestica and has shown a daily rhythm in its concentration, as examined immunocytochemically. CRY was co-localized with PDF in the sPDFMe of the housefly's brain fixed during the day. The possibility that the sPDFMe neurons are the housefly's clock neurons is discussed.  相似文献   

15.
Macro and microdissection methods, conventional histology and immunohistochemical procedures were used to investigate the nasal cavity and turbinate complex in fetal and adult sheep, with special attention to the ethmoturbinates, the vestibular mucosa, and the septal mucosa posterior to the vomeronasal organ. The ectoturbinates, which are variable in number and size, emerge and develop later than the endoturbinates. The olfactory sensory epithelium is composed of basal cells, neurons, and sustentacular cells organized in strata, but numerous different types are distinguishable on the basis of their thickness and other properties; all variants are present on the more developed turbinates, endoturbinates II and III. Mature neurons and olfactory nerve bundles express olfactory marker protein. We found no structure with the characteristics that in mouse define the septal organ or the ganglion of Grüneberg. Our results thus suggest that in sheep olfactory sensory neurons are exclusively concentrated in the main olfactory epithelium and (to a lesser extent) in the vomeronasal organ. Microsc. Res. Tech. 77:1052–1059, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Apoptosis in the mature and developing olfactory neuroepithelium   总被引:3,自引:0,他引:3  
Neuronal apoptosis is important in the developmental sculpting of a normal nervous system and also in the loss of neurons caused by neurodegenerative disease, ischemia or trauma. In a developing embryo, exquisite mechanisms of regulation exist to balance factors that control neuronal birth and death within a given neuronal group, so that sufficient neurons develop and survive to elicit normal function. Postnatally, the only part of the mammalian nervous system where many of these regulatory balance mechanisms are retained is the olfactory epithelium (OE). During the last 30 years, researchers investigating olfactory receptor neuron cellular and developmental biology have focussed on the regeneration of the neuronal population within the olfactory neuroepithelium, following the induced death of the mature neuronal population. This body of work has thus far overshadowed the equally important and intrinsically linked phenomenon of the death of mature olfactory receptor neurons, which is required to initiate regeneration. The purpose of this review is to reveal what has been established about the different forms of cell death that can occur in neurons of the olfactory epithelium, and highlight the identified pro- and anti-apoptotic pathways that control the normal and induced turnover of olfactory receptor neurons.  相似文献   

17.
18.
In the giant male prawn, Macrobrachium rosenbergii, the olfactory system is thought to be the main pathway for modulating sexual behavior through pheromone perception. In this report, we first used gross anatomical, histological, and SEM methods to describe the structures of the olfactory receptors (sensilla setae), their neural pathways, and possible role in modulating mating behavior. On the surfaces of antennule and antenna filaments there are four types of sensory receptors, viz single spike‐like setae, single flagellum‐like setae, multiple flagella‐like setae, and aesthetascs (ASs). The ASs, which had previously been proposed to be odor receptor setae, are found only on the short filament of lateral antennule (slAn). Each AS on the slAn connects with olfactory receptor neurons (ORNs), whose axons form an outer central antennule nerve (ocAnNv), which then connects with the olfactory neutrophil (ON) of the brain. Thus, the slAn is the major olfactory organ that conveys sensory inputs from each AS to the ON within the deutocerebrum. GABA immunoreactivity was present in ASs, neurons of ORNs, inner central antennular, lateral tegumentary nerve, ocAnNv and the ON, inferring that GABA is the likely neurotransmitter in modulating olfaction. Disruption of the slAn by ablation or covering with Vaseline, resulted in significant reduction of mating behavior, indicating that this organ is crucial for sex pheromone perception. Identification of the active pheromones and further bioassays are now being performed. Microsc. Res. Tech. 76:572–587, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Mammalian olfactory neurons possess a well-developed system of endocytic vesicles, endosomes, and lysosomes in their dendrites and perikarya. Vomeronasal neurons are similar and also contain much perikaryal agranular endoplasmic reticulum (AER). Olfactory supporting cells contain endocytic vesicles and endosomes associated closely with abundant fenestrated AER, and vesicles and numerous large dense vacuoles are present basally. Vomeronasal supporting cells have little AER, and few dense vacuoles occur in their bases. In olfactory neurons, ultrastructural tracers (0.08% horseradish peroxidase, thorium dioxide, ferritin) are endocytosed by olfactory receptor endings and transported to the cell body, where their movement is halted in lysosomes. Higher concentrations (1%) of horseradish peroxidase penetrate olfactory receptor plasma membranes and intercellular junctions. In olfactory supporting cells, endocytosed tracers pass through endosomes to accumulate in dense basal vacuoles. These observations indicate that olfactory sensory membranes are rapidly cycled and that endocytosed materials are trapped within the epithelium. It is proposed that in the olfactory epithelium, endocytosis presents redundant odorants to the enzymes of the supporting cell AER to prevent their accumulation, whereas in the vomeronasal epithelium the receptor cells carry out this activity.  相似文献   

20.
To ascertain the possible implications of the nitric oxide (NO*) producing system in striatal senescence, and by using immunohistochemistry and image-processing approaches, we describe the presence of the enzyme nitric oxide synthase (NOS), the NADPH-diaphorase (NADPH-d) histochemical marker, and nitrotyrosine-derived complexes (N-Tyr) in the striatum of adult and aged rats. The results showed neuronal NOS immunoreactive (nNOS-IR) aspiny medium-sized neurons and nervous fibres in both age groups, with no variation in the percentage of immunoreactive area but a significant decrease in the intensity and in the number of somata with age, which were not related to the observed increase with age of the striatal bundles of the white matter. In addition, NADPH-d activity was detected in neurons with morphology similar to that of the nNOS-IR cells; a decrease in the percentage of area per field and in the number of cells, but an increase in the intensity of staining for the NADPH-d histochemical marker, were detected with age. The number of neuronal NADPH-d somata was higher than for the nNOS-IR ones in both age groups. Moreover, N-Tyr-IR complexes were observed in cells (neurons and glia) and fibres, with a significant increase in the percentage of the area of immunoreaction, related to the increase of white matter, but a decrease in intensity for the aged group. On the other hand, we did not detect the inducible isoform (iNOS) either in adult or in aged rats. Taken together, these results support the contention that NADPH-d staining is not such an unambiguous marker for nNOS, and that increased protein nitration may participate in striatal aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号