首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Providing end-to-end parameterized QoS is desirable for many network applications and has received a lot of attention in recent years. However, it remains a challenge, especially over hybrid networks involving both wired networks and wireless access segments (such as IEEE 802.11 Wireless Local Area Networks (WLANs)). The difficulty in achieving such QoS arises mainly because wireless segments often constitute “gaps" in terms of resource guarantee, due to the lack of efficient resource scheduling and management ability over shared wireless media, as well as the lack of an appropriate QoS signaling interface to seamlessly embed these wireless segments into an end-to-end QoS signaling system. In this paper, we consider the scenario where an IEEE 802.11 wireless node wishes to make an end-to-end resource reservation to a remote wired Internet node and vice versa. We propose Wireless Subnet Bandwidth Manager (Wireless SBM), an extension of SBM protocol to WLANs, to provide seamless end-to-end resource reservations. Wireless SBM utilizes the enhanced resource management ability provided by Hybrid Coordination Function (introduced in the upcoming IEEE 802.11e standard) to provide parameterized resource reservation and admission control.  相似文献   

2.
IEEE 802.11, the standard of wireless local area networks (WLANs), allows the coexistence of asynchronous and time-bounded traffic using the distributed coordination function (DCF) and point coordination function (PCF) modes of operations, respectively. In spite of its increasing popularity in real-world applications, the protocol suffers from the lack of any priority and access control policy to cope with various types of multimedia traffic, as well as user mobility. To expand support for applications with quality-of-service (QoS) requirements, the 802.11E task group was formed to enhance the original IEEE 802.11 medium access control (MAC) protocol. However, the problem of choosing the right set of MAC parameters and QoS mechanism to provide predictable QoS in IEEE 802.11 networks remains unsolved. In this paper, we propose a polling with nonpreemptive priority-based access control scheme for the IEEE 802.11 protocol. Under such a scheme, modifying the DCF access method in the contention period supports multiple levels of priorities such that user handoff calls can be supported in wireless LANs. The proposed transmit-permission policy and adaptive bandwidth allocation scheme derive sufficient conditions such that all the time-bounded traffic sources satisfy their time constraints to provide various QoS guarantees in the contention free period, while maintaining efficient bandwidth utilization at the same time. In addition, our proposed scheme is provably optimal for voice traffic in that it gives minimum average waiting time for voice packets. In addition to theoretical analysis, simulations are conducted to evaluate the performance of the proposed scheme. As it turns out, our design indeed provides a good performance in the IEEE 802.11 WLAN's environment, and can be easily incorporated into the hybrid coordination function (HCF) access scheme in the IEEE 802.11e standard.  相似文献   

3.
In this paper, we propose a new novel polling-based medium access control protocol, named UPCF (Unified Point Coordination Function), to provide power conservation and quality-of-service (QoS) guarantees for multimedia applications over wireless local area networks. Specifically, UPCF has the following attractive features. First, it supports multiple priority levels and guarantees that high-priority stations always join the polling list earlier than low-priority stations. Second, it provides fast reservation scheme such that associated stations with real-time traffic can get on the polling list in bounded time. Third, it employs dynamic channel time allocation scheme to support CBR/VBR transportation and provide per-flow probabilistic bandwidth assurance. Fourth, it employs the power management techniques to let mobile stations save as much energy as possible. Fifth, it adopts the mobile-assisted admission control technique such that the point coordinator can admit as many newly flows as possible while not violating QoS guarantees made to already-admitted flows. The performance of UPCF is evaluated through both analysis and simulations. Simulation results do confirm that, as compared with the PCF in IEEE 802.11, UPCF not only provides higher goodput and energy throughput, but also achieves lower power consumption and frame loss due to delay expiry. Last but not least, we expect that UPCF can pass the current Wi-Fi certification and may coexist with the upcoming IEEE 802.11e standard.  相似文献   

4.
A survey of quality of service in IEEE 802.11 networks   总被引:9,自引:0,他引:9  
Developed as a simple and cost-effective wireless technology for best effort services, IEEE 802.11 has gained popularity at an unprecedented rate. However, due to the lack of built-in quality of service support, IEEE 802.11 experiences serious challenges in meeting the demands of multimedia services and applications. This article surveys 802.11 QoS schemes, including service differentiation in the MAC layer, admission control and bandwidth reservation in MAC and higher layers, and link adaptation in the physical layer, designed to meet these challenges by providing the necessary enhancements for the required QoS. Furthermore, the article addresses issues that arise when end-to-end QoS has to be guaranteed in today's pervasive heterogeneous wired-cum-wireless networks. Among these challenges, protocol interoperability, multihop scheduling, full mobility support, and seamless vertical handoff among multiple mobile/wireless interfaces are specifically addressed.  相似文献   

5.
An IEEE 802.11 wireless local area network (WLAN) provides the centralized polling-based medium access control (MAC) to support Quality of Service (QoS) requirements. In this letter, we present a performance analysis of popular polling MAC schemes over the Gilbert–Elliot channel model. We describe our validation through simulations under various channel conditions and discuss performance characteristics of the polling schemes.  相似文献   

6.
Supporting Quality of Service (QoS) in wireless networks is a challenging problem. The IEEE 802.11 LAN standard was developed primarily for elastic data applications. In order to support the transmission of real-time data, a polling-based scheme called the point coordination function (PCF) was introduced in IEEE 802.11. However, PCF was not able to meet the desired and practical service differentiation requirements to fulfill the need of real-time data. Therefore, Task Group E of the IEEE 802.11 working group released several IEEE 802.11e drafts, whose main task is to support QoS in IEEE 802.11 LANs. The polling scheme of PCF is extended in IEEE 802.11e into the more complex hybrid coordination function (HCF). We found that HCF has several performance issues that may affect its anticipated performance. In this paper, we address these issues and propose a QoS enhancement over PCF, called enhanced PCF (EPCF) that enables Wireless LAN to send a combination of voice, data and isochronous data packets using the current IEEE 802.11 PCF. First, we compare the performance of the proposed model (EPCF) with the HCF function of the IEEE 802.11e through simulation. Second, we extend the proposed model (EPCF) to work in a multihop wireless ad hoc mode and present the advantages and limitations in this case. Simulation results demonstrate an enhanced performance of our scheme over the legacy PCF and a comparable performance to the IEEE 802.11e HCF in terms of the average delay and system throughput. However, EPCF is much simpler than HCF, provides flow differentiation, and is easy to implement in the current IEEE 802.11 standard.  相似文献   

7.
This paper presents an end-to-end reservation protocol for quality-of-service (QoS) support in the medium access control layer of wireless multihop mesh networks. It reserves periodically repeating time slots for QoS-demanding applications, while retaining the distributed coordination function (DCF) for best effort applications. The key features of the new protocol, called "distributed end-to-end allocation of time slots for real-time traffic (DARE), are distributed setup, interference protection, and scheduling of real-time data packets, as well as the repair of broken reservations and the release of unused reservations. A simulation-based performance study compares the delay and throughput of DARE with those of DCF and the priority-based enhanced distributed channel access (EDCA) used in IEEE 802.11e. In contrast to DCF and EDCA, DARE has a low, nonvarying delay and a constant throughput for each reserved flow  相似文献   

8.
As demand for broadband multimedia wireless services increases, improving quality of service (QoS) of the widely deployed IEEE 802.11 wireless LAN (WLAN) has become crucial. To support the QoS required by a wide range of applications, the IEEE 802.11 working group has defined a new standard: IEEE 802.11e. In this paper, we propose a measurement‐based dynamic media time allocation (MBDMTA) scheme combined with a concatenating window scheme to support real‐time variable bit rate (rt‐VBR) video and best‐effort (BE) data transmission using IEEE 802.11e enhanced distributed channel access (EDCA). To provide the QoS guarantee for rt‐VBR video, the proposed MBDMTA scheme dynamically assigns channel time to the rt‐VBR video based on the estimate of the required network resources. On the other hand, the concatenating window scheme controls the contention window (CW) ranges of different priority flows such that real‐time services always have higher channel access probability, thus achieving the capability of preemptive priorities. In addition, the concatenating window scheme preserves fairness among flows of the same class and attains high channel utilization under different network conditions. Simulation results demonstrate that the throughput and delay performance improve significantly for the transmission of rt‐VBR video and BE traffic as compared to those for the 802.11e EDCA specification. It is also revealed that combining the two proposed schemes provides seamless integration and reliable transmission of digital video and data service within the 802.11e EDCA framework. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The recently developed H.264 video standard achieves efficient encoding over a bandwidth ranging from a few kilobits per second to several megabits per second. Hence, transporting H.264 video is expected to be an important component of many wireless multimedia services, such as video conferencing, real-time network gaming, and TV broadcasting. However, due to wireless channel characteristics and lack of QoS support, the basic 802.11-based channel access procedure is merely sufficient to deliver non-real-time traffic. The delivery should be augmented by appropriate mechanisms to better consider different QoS requirements and ultimately adjust the medium access parameters to the video data content characteristics. In this article we address H.264 wireless video transmission over IEEE 802.11 WLAN by proposing a robust cross-layer architecture that leverages the inherent H.264 error resilience tools (i.e., data partitioning); and the existing QoS-based IEEE 802.11e MAC protocol possibilities. The performances of the proposed architecture are extensively investigated by simulations. Results obtained indicate that compared to 802.11 and 802.11e, our cross-layer architecture allows graceful video degradation while minimizing the mean packet loss and end-to-end delays.  相似文献   

10.
Admission control in IEEE 802.11e wireless LANs   总被引:2,自引:0,他引:2  
Although IEEE 802.11 based wireless local area networks have become more and more popular due to low cost and easy deployment, they can only provide best effort services and do not have quality of service supports for multimedia applications. Recently, a new standard, IEEE 802.11e, has been proposed, which introduces a so-called hybrid coordination function containing two medium access mechanisms: contention-based channel access and controlled channel access. In this article we first give a brief tutorial on the various MAC-layer QoS mechanisms provided by 802.11e. We show that the 802.11e standard provides a very powerful platform for QoS supports in WLANs. Then we provide an extensive survey of recent advances in admission control algorithms/protocols in IEEE 802.11e WLANs. Our survey covers the research work in admission control for both EDCA and HCCA. We show that the new MAC-layer QoS schemes and parameters provided in EDCA and HCCA can be well utilized to fulfill the requirements of admission control so that QoS for multimedia applications can be provided in WLANs. Last, we give a summary of the design of admission control in EDCA and HCCA, and point out the remaining challenges.  相似文献   

11.
Multimedia over IEEE 802.11 wireless local area networks (WLANs) has recently been the focus of many researchers due to its rapidly increasing popularity. Unlike their best-effort counterparts, multimedia applications have quality of service (QoS) needs typically expressed in terms of the maximum allowed delay and/or the minimum required throughput. Therefore, prior to accepting a multimedia application, the network must assure the satisfaction of its QoS requirements. In this paper, we develop a mechanism that can be used to control the admissibility of multimedia applications into WLANs. To develop the proposed mechanism, we first derive an analytical approximation of the delay experienced by packets when travelled through these networks. The analytical approximation of the delay is then used to propose an admission control mechanism for the enhanced distributed channel access (EDCA) method used by the hybrid coordination function (HCF) of IEEE 802.11e. The proposed delay-based admission control mechanism is validated via simulations of voice traffic.  相似文献   

12.
Design of an efficient wireless medium access control (MAC) protocol is a challenging task due to the time‐varying characteristics of wireless communication channel and different delay requirements in diverse applications. To support variable number of active stations and varying network load conditions, random access MAC protocols are employed. Existing wireless local area network (WLAN) protocol (IEEE 802.11) is found to be inefficient at high data rates because of the overhead associated with the contention resolution mechanism employed. The new amendments of IEEE 802.11 that support multimedia traffic (IEEE 802.11e) are at the expense of reduced data traffic network efficiency. In this paper, we propose a random access MAC protocol called busy tone contention protocol (BTCP) that uses out‐of‐band signals for contention resolution in WLANs. A few variants of this protocol are also proposed to meet the challenges in WLAN environments and application requirements. The proposed BTCP isolate multimedia traffics from background data transmissions and gives high throughput irrespective of the number of contending stations in the network. As a result, in BTCP, admission control of multimedia flows becomes simple and well defined. Studies of the protocol, both analytically and through simulations under various network conditions, have shown to give better performance in comparison with the IEEE 802.11 distributed coordination function. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
One of the challenges that must be overcome to realize the practical benefits of ad hoc networks is quality of service (QoS). However, the IEEE 802.11 standard, which undeniably is the most widespread wireless technology of choice for WLANs and ad hoc networks, does not address this issue. In order to support applications with QoS requirements, the upcoming IEEE 802.11e standard enhances the original IEEE 802.11 MAC protocol by introducing a new coordination function which has both contention-based and contention-free medium access methods. In this paper, we consider the contention-based medium access method, the EDCA, and propose an extension to it such that it can be used to provide QoS guarantees in WLANs operating in ad hoc mode. Our solution is fully distributed, uses admission control to regulate the usage of resources and gives stations with high-priority traffic streams an opportunity to reserve time for collision-free access to the medium.  相似文献   

14.
Power control in direct sequence code division multiple access (DS-CDMA) systems and power/rate allocation in multirate DS-CDMA based networks is an open and interesting research area which has attracted much attention. However, with a few exceptions, most researchers have emphasized centralized resource allocation algorithms for cellular systems where the base station keeps track of the requirements of the various users and is thus responsible for the management of network resources. Ad hoc wireless local area networks (WLANs), on the other hand, are generally configured as peer-to-peer networks with no centralized hub or controller. Thus resource allocation has to be conducted in a distributed fashion. We address the issue of distributed resource management for multirate DS-CDMA based multimedia WLANs by (1) presenting a distributed resource allocation protocol, known as distributed resource negotiation protocol (DRNP) that builds on the RTS/CTS bandwidth reservation mechanism provided by IEEE 802.111, and provides quality of service (QoS) guarantees through distributed control of resources in DS-CDMA based multimedia WLANs and (2) investigating the performance of various resource allocation schemes within the context of DRNP, in terms of network wide metrics such as overall throughput and blocking rates  相似文献   

15.
为提升车用自组网传输音频、视频的服务质量,对基于IEEE802.11p的车用无线接入技术MAC机制进行改进,提出竞争窗口自适应EDCA机制。仿真实验表明,竞争窗口自适应EDCA机制有效地降低了车用自组网中音频、视频流的传输时延、时延抖动和丢包率,保证了车用自组网传输VoIP、视频会议、音视频流媒体等多媒体业务的服务质量。  相似文献   

16.
This work presents an admission control mechanism for multi-hop wireless mesh networks based on the IEEE 802.11 standard and the OLSR routing protocol. This mechanism, called CAC-OLSR, aims at ensuring that traffic flows with quality of service (QoS) requirements, especially voice and video, are only admitted in the mesh network if it has available resources in order to provide flow requirements. In addition, QoS requirements of previously admitted traffic flows cannot be violated. The proposal was evaluated with NS-2 and Evalvid simulations.  相似文献   

17.
随着使用WLAN(无线局域网)接入因特网的日渐普及,IEEE802.11eWLAN中的HCCA(混合控制信道接入)机制由于在处理实时多媒体业务的高效率受到越来越广泛的关注。在WLAN中为达到高带宽利用率和良好的端到端QoS,介绍了一种基于HCCA机制的带宽分配算法,同时对该算法与802.11PCF(点协调功能)两种接入场景下的网络性能进行仿真比较,其结果验证了该算法可以为WLAN提供良好的QoS保证,对在WLAN中传输语音、视频等实时业务具有一定的指导意义。  相似文献   

18.
With the advent of multimedia over wireless local area networks, the IEEE 802.11e standard was proposed to incorporate Quality of Service (QoS). It has been found that the throughput of Transmission Control Protocol (TCP) is less than that of User Datagram Protocol (UDP) in the IEEE 802.11e. This is because the TCP acknowledgment packets are queued up at the access points. In this paper, two types of TCP acknowledgment prioritizing schemes are proposed. The proposed schemes improve the overall throughput of TCP while maintaining the QoS requirements. We also analyze the problem of starvation of lower priority traffic and its effects on the performance of lower priority TCP traffic. The proposed dynamic scheme of TCP acknowledgment prioritization aims at improving the throughput of the lower priority TCP traffic under heavy network load while maintaining the QoS requirements of the higher priority traffic. The schemes have been verified through extensive simulation.  相似文献   

19.
Modern wireless networks are offering a wide range of applications that require the efficient integration of multimedia and traditional data traffic along with QoS provision. The IEEE 802.11e workgroup has standardized a new QoS enhanced access scheme for wireless LANs, namely Hybrid Control Function (HCF). HCF consists of the Enhanced Distributed Channel Access (EDCA) and the Hybrid Control Channel Access (HCCA) protocols which manage to ensure QoS support. However, they exhibit specific weaknesses that limit network performance. This work analyzes an alternative protocol, called Priority Oriented Adaptive Polling (POAP). POAP is an integrated channel access mechanism, is collision free, it employs priorities to differentiate traffic in a proportional way, it provides fairness, and generally supports QoS for all types of multimedia applications, while efficiently serving background data traffic. POAP is compared to HCF in order to examine the wireless network performance when serving integrated traffic.  相似文献   

20.
Real-time applications introduce new requirements on wireless networks and impose quality thresholds on parameters like delay, jitter, throughput, and packet loss in order to run smoothly. This paper addresses this issue by presenting a MAC scheme that offers real-time applications the opportunity to reserve transmission time based on their QoS requirements for contention-free medium access. Our scheme, which is called EDCA with Resource Reservation (EDCA/RR), operates in a fully distributed manner, is compatible with IEEE 802.11, and provides both prioritized and parameterized QoS. In this study, we have extended EDCA/RR to handle reservation collisions and, through extensive simulations, we show that our proposal can handle multiple reservations as well as uninformed stations that lie outside the transmission range of both the transmitter and the receiver while providing QoS guarantees. We compare EDCA/RR with EDCA and our results show that, as the traffic in the network increases, EDCA/RR succeeds providing the required service to QoS-demanding applications whereas EDCA fails in this task. In addition, when the medium is lossy we show that, not only does EDCA/RR give better service to real-time traffic, but also to contending non-real-time traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号