共查询到18条相似文献,搜索用时 78 毫秒
1.
传统运动目标检测方法通常在像素或硬性划分的区域上实现.文中使用分水岭变换自动将图像划分成灰度一致性区域,并以一致性区域为基元进行运动目标检测.针对分水岭变换的过分割问题,在多步形态学梯度图像上进行变换.针对运动目标检测的低虚警率和高实时性要求,直接考察待检测图像中每一个一致性区域与一组背景图像中对应区域间的差异程度,设计灰度差异、颜色畸变及相邻区域间的灰度关系准则综合判断各区域是前景还是背景.该方法与流行的检测方法相比具有较低的虚警率,避免区域级检测方法中的硬性分块问题,同时又具有一定的处理速度.多个室内和室外标准图像序列的测试证明该算法的有效性. 相似文献
2.
改进的基于高斯混合模型的运动目标检测方法 总被引:4,自引:0,他引:4
针对固定摄像机的视频监控系统,提出了一种改进的基于混合高斯模型的运动目标检测方法。在模型学习方面,均值与方差采用了不同的学习率,其中均值更新采用自适应的学习率,方差的学习率取固定值;引入权值均值概念,然后结合权值进行像素点的前景和背景分类;利用了背景图像消除阴影。实验结果表明,改进的方法与传统方法相比具有更好的学习能力,能提高在繁忙场景中,大而慢的运动目标检测的正确率。 相似文献
3.
4.
介绍了在视觉监控领域经常用到的几种基于自适应背蒂模型的经典方法,如非参数模型、单高斯模型和混合高斯模型等。通过试验.比较了上述方法在检测过程中的优势和不足之处,以其在工程实践中有一定的参考作用。 相似文献
5.
介绍了在视觉监控领域经常用到的几种基于自适应背景模型的经典方法,如非参数模型、单高斯模型和混合高斯模型等。通过试验,比较了上述方法在检测过程中的优势和不足之处,以其在工程实践中有一定的参考作用。 相似文献
6.
7.
混合高斯背景模型算法被广泛地运用于运动检测中,但是该算法在一些复杂的室外场景下未能有效地反映背景,容易出现误检测。为此提出一种改进的算法,该算法在更新背景模型时对不同的区域采用不同的更新速率,并在进行前景检测时加入一种阈值判断,最后对检测结果进行去噪处理。实验结果表明,改进后的算法能够更好地处理多模态区域,减少前景检测中出现的空洞,避免由于方差过度收敛引起的误检测,从而更精确地实现运动目标分割。 相似文献
8.
针对固定场景视频监控中,由于运动物体在运动目标检测算法初始化时的存在而导致传统的基于高斯混合模型的运动目标检测算法收敛速度慢的问题,提出了改进算法。该改进算法通过采用在线K-均值聚类方法对混合高斯模型进行初始化,提高了算法的收敛速度。同时在模型更新时,通过对匹配准则和新高斯分布生成准则的改进,节约了存储空间。实验结果表明,与传统算法相比,改进算法能够快速、有效地检测运动目标,具有更好的鲁棒性。 相似文献
9.
高斯混合模型已经成为对视频利用背景减除法进行运动目标检测的最多的一种背景建模模型,也成为一种标准模型。首先对高斯混合模型的理论框架进行了分析,然后采用OpenCV技术实现高斯混合模型来检测视频运动目标,实验结果表明高斯混合模型对摄像头静止的道路监控视频运动目标检测具有较好的效果。最后以该运动目标检测技术为基础设计了一种智能视频监控系统,该系统具有较好的实用性。 相似文献
10.
研究了序列图像中的运动目标检测问题。传统的目标检测方法无法克服背景图像变化、场景光线突变、目标物阴影干扰等问题。采用混合高斯分布对背景进行建模,引入亮度信息进行前序处理,并在此基础上使用颜色模型对残留阴影进行移除,因此能够快速准确地检测出运动目标。通过相关仿真实验,证明了该方法具有可靠性和实时性。 相似文献
11.
提出了一种高斯混合背景模型和YUV色度空间相结合的运动目标检测算法。高斯混合模型对背景光线变化有较强的鲁棒性,且对背景中的周期性变化有较好的抑制作用,检测出的目标有较好的连通性;但其对于全局亮度的变化及噪声较为敏感,容易误判。为此选取对亮度变化不敏感的UV分量来进行运动目标检测,然后再和Y分量的高斯混合背景检测进行"与"运算,从而消除高斯模型的误检,最后针对运动目标的影子问题,采用基于垂直投影图的阴影消除算法除去影子。算法在DM642开发板上实现。实验结果表明,该算法能够实时精确地检测出运动目标,且对全局光照变化不敏感。 相似文献
12.
针对传统混合高斯模型检测运动目标中存在的不足,提出了一种改进的基于混合高斯模型的运动目标检测算法。将改进的混合高斯模型与四帧差分相结合,有效地解决了突变光照的影响并消除了传统帧差法检测目标时容易出现的双影现象,改进的混合高斯模型自适应地调整了高斯模型的分布数量,提高了背景的描述精度。分情况讨论了物体的运动状态并分别设置不同的学习率,改善了对运动缓慢目标的检测效果。实验结果表明结合后的算法能对运动目标进行准确检测,对复杂场景有较好的适应性。 相似文献
13.
运动目标检测是智能视频监控中图像序列分析的基础和研究热点,针对时域算法在检测近景大目标缓慢运动时,仅能检测出目标边缘、内部存在大量空洞等完整分割问题,提出了一种结合时空特征的近景运动目标检测算法。该算法在时域运动历史多模态均值背景模型的基础上,运用图像空域信息研究前/背景分割技术,通过能量最小化模型、网络构造及网络流理论,把目标检测转换成最大流/最小割问题。实验表明,该算法能在复杂环境中克服光照缓慢变化、背景扰动和摄像机轻微抖动,有效转换前/背景,准确完整地分割大运动目标。 相似文献
14.
目的 如何使快速性与完整性达到平衡是运动目标检测的关键问题。现有的满足快速性的算法容易受到光照的影响,对动态环境的适应能力较弱,获取的目标信息不完整,导致空洞问题的产生。而具有较高完整性的算法复杂度高,运算速度慢,实时性差。为此,本文提出基于自适应混合高斯建模的3帧差分算法。方法 利用3帧差分运算简单、可扩展性强、抗干扰能力好的特性,对视频图像进行目标轮廓的提取。针对3帧差分运算导致目标内部信息提取不完整的问题,采用学习率自适应调整的混合高斯背景差分,在模型创建之初,通过较快的模型更新速率,增加背景模型的迭代次数,消除物体运动造成的"鬼影"。在背景模型中的干扰信息消除之后,以目标像素及相邻8像素在当前帧与背景模型中的差异度为依据调整学习率,实现背景模型的自适应修正,增加目标图像的完整性;同时,通过删除冗余的高斯分布,降低算法复杂度。为进一步确保目标边缘的完整及连续,采用边缘对比差分算法,使参与运算的帧数依据目标的运动速度自适应选取,以降低背景点的误判率,使边缘信息尽可能地连续、完整。结果 本文算法获取的目标信息完整,且边缘平滑。在提升检测率的同时保证较高的准确率,达到了95.23%,所获目标的完整度提高了28.95%;与传统混合高斯算法相比,时间消耗降低了29.18%,基本达到实时性要求。与基于混合高斯建模的背景差分法(BD-GMM)和基于边缘对比的3帧差分法(TFD-EC)相比,本文算法明显占优。结论 实验结果表明,本文算法可以有效抑制动态环境的干扰,降低算法复杂度,既保证实时性,又具有较好的完整性,可广泛应用于智能视频监控、军事应用、工业检测、航空航天等领域。 相似文献
15.
传统室内Wi-Fi网络下的被动式运动目标检测方法只提取Wi-Fi信号的均值、方差等粗粒度统计信息,导致系统检测率低。实现被动式运动目标检测的关键是捕获目标对无线链路的影响。探讨了表征原始信号整体分布的方法,构建一种新的相干直方图,并提出基于相干直方图的被动式运动目标检测算法。为解决追踪过程中的位置漂移问题,利用艾伦时间逻辑建立监测区域中不同子区域间的物理逻辑转移关系,对追踪结果进行实时校正。实验结果表明,相较于经典的被动检测技术,该方法基于相干直方图的被动式运动目标检测算法性能更优,综合指标F 1-measure提高近5%。 相似文献
16.
17.
将运动目标检测的改进方式分为三类。针对固定摄像机的视觉监控系统,提出了一种改进的高斯混合模型算法。通过对方差在高斯混合模型中的作用进行分析,省略方差更新,将方差设为固定值,均值学习率采用固定值。实验结果表明,同传统检测方法相比,改进的算法具有更好的实时性与可靠性。 相似文献
18.
针对存在3D场景遮挡的航拍视频运动小目标跟踪问题,提出一种基于多视角航拍配准的运动小目标检测和跟踪算法。该算法首先对图像序列间隔采样,利用Harris检测器提取全局特征点,通过Delaunay三角网对待配准图像实现初始匹配,然后利用整合变换模型计算差分图像,并利用累积能量检测出目标,最后通过卡尔曼运动滤波消除运动目标跟踪的抖动。实验结果表明,该算法对城市和郊区场景的航拍视频可以检测出最小30个像素的缓慢运动目标。 相似文献