共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2022,47(45):19463-19480
In this paper, a new geothermal-based multigeneration system is designed and investigated in both thermodynamic and economic analyses. The reason to select the geothermal source is that geothermal power is a renewable and sustainable power resource, and also it is not weather dependent. The proposed geothermal-based multigeneration plant is able to produce power, heating, cooling, swimming pool heating, and hydrogen. The main idea in this renewable-based multigeneration system is to create valuable products by using waste heat of subsystems. Then, by applying thermodynamic analyses, the energy and exergy performances of proposed multigeneration system are computed. Also, parametric work has been performed in order to see the impacts of the reference temperature, geothermal fluid temperature, and geothermal water mass flow rate. Finally, exergo-economic analysis based on exergy destruction or thermodynamic losses is done to gain more information about the system and to evaluate it better. According to the calculations, the overall plant's energy and exergy performances are 32.28% and 25.39%. Economic analysis indicates that hydrogen production cost can be dropped down to 1.06 $/kg H2. 相似文献
2.
3.
Performance and parametric investigation of a binary geothermal power plant by exergy 总被引:1,自引:0,他引:1
Exergy analysis of a binary geothermal power plant is performed using actual plant data to assess the plant performance and pinpoint sites of primary exergy destruction. Exergy destruction throughout the plant is quantified and illustrated using an exergy diagram, and compared to the energy diagram. The sites with greater exergy destructions include brine reinjection, heat exchanger and condenser losses. Exergetic efficiencies of major plant components are determined in an attempt to assess their individual performances. The energy and exergy efficiencies of the plant are 4.5% and 21.7%, respectively, based on the energy and exergy of geothermal water at the heat exchanger inlet. The energy and exergy efficiencies are 10.2% and 33.5%, respectively, based on the heat input and exergy input to the binary Rankine cycle. The effects of turbine inlet pressure and temperature and the condenser pressure on the exergy and energy efficiencies, the net power output and the brine reinjection temperature are investigated and the trends are explained. 相似文献
4.
The present study undertakes an exergy analysis of earth to air heat exchanger (EAHE) and applies to a local one in Turkey. Namely, the exergy performance of an EAHE has been evaluated in a demonstration in Solar Energy Institute of Ege University, Izmir, Turkey. Exergetic efficiencies of the system components are determined as an attempt to assess their individual performances. The daily maximum heating coefficient of performance (COP) value for the system is obtained to be 6.18. The total average COP in the experimental period is found to be 4.74. 相似文献
5.
Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts 总被引:1,自引:0,他引:1
The irreversibilities (exergy destruction) within a component of an energy conversion system can be represented by two parts. The first part depends on the inefficiencies of the considered component while the second part depends on the system structure and the inefficiencies of the other components of the overall system. Thus, the exergy destruction occurring within a component can be split into two parts: (a) endogenous exergy destruction due exclusively to the performance of the component being considered and (b) exogenous exergy destruction caused also by the inefficiencies within the remaining components of the overall system. The paper discusses four different approaches developed by the authors for calculating the endogenous part of exergy destruction as well as the approach based on the structural theory. The advantages, disadvantages and restrictions for applications associated with each approach are presented. It is concluded that all approaches developed by the authors lead to comparable and acceptable results, whereas the structural theory approach should not be used for calculating the endogenous part of exergy destruction because it delivers unacceptable results. Splitting the exergy destruction into endogenous and exogenous parts improves our understanding of the interactions among system components and provides very useful information for improving an exergy conversion system, particularly when this concept is combined with the concept of avoidable and unavoidable exergy destruction. 相似文献
6.
In this study, we investigate a solar-assisted biomass gasification system for hydrogen production and assess its performance thermodynamically using actual literature data. We also analyze the entire system both energetically and exergetically and evaluate its performance through both energy and exergy efficiencies. Three feedstocks, namely beech charcoal, sewage sludge and fluff, are considered as samples in the same reactor. While energy efficiencies vary from 14.14% to 27.29%, exergy efficiencies change from 10.43% to 23.92%. We use a sustainability index (SI), as a function of exergy efficiency, to calculate the impacts on sustainable development and environment. This index changes from 1.12 to 1.31 due to intensive utilization of solar energy. Also, environmental impact of these systems is evaluated through calculating the specific greenhouse gas (GHG) emissions. They are determined to be 17.97, 17.51 and 26.74 g CO2/MJ H2 for beech charcoal, sewage sludge and fluff, respectively. 相似文献
7.
Splitting the exergy destruction into endogenous/exogenous and unavoidable/avoidable parts has many advantages for the detailed analysis of energy conversion systems. Endogenous is the exergy destruction obtained when all other system components are ideal and the component being considered operates with its real efficiency. The difference between total and endogenous exergy destruction is the exogenous exergy destruction caused within the component being considered by the irreversibilities in the remaining components and the structure of the overall system. Unavoidable is the part of exergy destruction within one system component that cannot be eliminated even if the best available technology in the near future would be applied. The avoidable exergy destruction is the difference between total and unavoidable exergy destruction. These concepts enhance an exergy analysis and assist in improving the quality of the conclusions obtained from this analysis. The paper presents the combined application of both concepts to vapor-compression refrigeration machines using different one-component working fluids (R125, R134a, R22 and R717) as well as azeotropic (R500) and zeotropic (R407C) mixtures. The purpose of the paper is not to evaluate these working fluids, some of which cannot be used in future, but to demonstrate the effect of different material properties on the results of advanced exergy analysis. 相似文献
8.
In this study, a modified exergoeconomic model is proposed for geothermal power plants using exergy and cost accounting analyses, and a case study is in this regard presented for the Tuzla geothermal power plant system (Tuzla GPPS) in Turkey to illustrate an application of the currently modified exergoeconomic model. Tuzla GPPS has a total installed capacity of 7.5 MW and was recently put into operation. Electricity is generated using a binary cycle. In the analysis, the actual system data are used to assess the power plant system performance through both energy and exergy efficiencies, exergy losses and loss cost rates. Exergy efficiency values vary between 35% and 49% with an average exergy efficiency of 45.2%. The relations between the capital costs and the exergetic loss/destruction for the system components are studied. Six new exergetic cost parameters, e.g., the component annualized cost rate, exergy balance cost, overall unavoidable system exergy destruction/loss cost rate, overall unavoidable system exergy destruction/loss cost rate, overall unavoidable system exergy production cost rate and the overall unavoidable system exergy production cost rate are studied to provide a more comprehensive evaluation of the system. 相似文献
9.
Exergoeconomic formulations and procedure including exergy flows and cost formation and allocation within a high temperature steam electrolysis (HTSE) system are developed, and applied at three environmental temperatures. The cost accounting procedure is based on the specific exergy costing (SPECO) methodology. Exergy based cost-balance equations are obtained by fuel and product approach. Cost allocations in the system are obtained and effect of the second-law efficiency on exergetic cost parameters is investigated. The capital investment cost, the operating and maintenance costs and the total cost of the system are determined to be 422.2, 2.04, and 424.3 €/kWh, respectively. The specific unit exergetic costs of the power input to the system are 0.0895, 0.0702, and 0.0645 €/kWh at the environmental temperatures of 25 °C, 11 °C, and −1 °C, respectively. The exergetic costs of steam are 0.000509, 0.000544, and 0.000574 €/kWh at the same environmental temperatures, respectively. The amount of energy consumption for the production of one kg hydrogen is obtained as 133 kWh (112.5 kWh power + 20.5 kWh steam), and this corresponds to a hydrogen cost of 1.6 €/kg H2. 相似文献
10.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2018,43(1):78-90
In this paper, we propose an integrated system aiming for hydrogen production with by-products using geothermal power as a renewable energy source. In analyzing the system, an extensive thermodynamic model of the proposed system is developed and presented accordingly. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. Due to the significance of some parameters, the impacts of varying working conditions are also investigated. The results of the energetic and exergetic analyses of the integrated system show that the energy and exergy efficiencies are 39.46% and 44.27%, respectively. Furthermore, the system performance increases with the increasing geothermal source temperature and reference temperature while it decreases with the increasing pinch point temperature and turbine inlet pressure. 相似文献
11.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2018,43(22):10268-10280
In this paper, the thermodynamic study of a combined geothermal power-based hydrogen generation and liquefaction system is investigated for performance assessment. Because hydrogen is the energy of future, the purpose of this study is to produce hydrogen in a clear way. The results of study can be helpful for decision makers in terms of the integrated system efficiency. The presented integrated hydrogen production and liquefaction system consists of a combined geothermal power system, a PEM electrolyzer, and a hydrogen liquefaction and storage system. The exergy destruction rates, exergy destruction ratios and exergetic performance values of presented integrated system and its subsystems are determined by using the balance equations for mass, energy, entropy, energy and exergy and evaluated their performances by means of energetic and exergetic efficiencies. In this regard, the impact of some design parameters and operating conditions on the hydrogen production and liquefaction and its exergy destruction rates and exergetic performances are investigated parametrically. According to these parametric analysis results, the most influential parameter affecting system exergy efficiency is found to be geothermal source temperature in such a way that as geothermal fluid temperature increases from 130 °C to 200 °C which results in an increase of exergy efficiency from 38% to 64%. Results also show that, PEM electrolyzer temperature is more effective than reference temperature. As PEM electrolyzer temperature increases from 60 °C to 85 °C, the hydrogen production efficiency increases from nearly 39% to 44%. 相似文献
12.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2021,46(30):16344-16359
Increasing environmental concerns and decreasing fossil fuel sources compel engineers and scientists to find resilient, clean, and inexpensive alternative energy options Recently, the usage of renewable power resources has risen, while the efficiency improvement studies have continued. To improve the efficiency of the plants, it is of great significance to recover and use the waste heat to generate other useful products. In this paper, a novel integrated energy plant utilizing a geothermal resource to produce hydrogen, ammonia, power, fresh water, hot water, heated air for drying, heating, and cooling is designed. Hydrogen, as an energy carrier, has become an attractive choice for energy systems in recent years due to its features like high energy content, clean, bountiful supply, non-toxic and high efficiency. Furthermore in this study, hydrogen beside electricity is selected to produce and stored in a hydrogen storage tank, and some amount of hydrogen is mixed with nitrogen to compound ammonia. In order to determine the irreversibilities occurring within the system and plant performance, energy and exergy analyses are then performed accordingly. In the design of the plant, each sub-system is integrated in a sensible manner, and the streams connecting sub-systems are enumerated. Then thermodynamic balance equations, in terms of mass, energy, entropy and exergy, are introduced for each unit of the plant. Based on the system inputs and outputs, the energy and exergy efficiencies of the entire integrated plant is found to be 58.68% and 54.73% with the base parameters. The second part of the analysis contains some parametric studies to reveal how some system parameters, which are the reference temperature, geothermal resource temperature and mass flow rate, and separator inlet pressure in the geothermal cycle, affect both energy and exergy efficiencies and hence the useful outputs. 相似文献
13.
Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes 总被引:2,自引:0,他引:2
This paper presents a comprehensive exergy analysis of three circuits and whole system of a ground-source heat pump (GSHP) for both building heating and cooling modes. The purpose is to search out the key potential energy saving components. The analytical formulae of exergy loss, exergy efficiency, exergy loss ratio, exergy loss coefficient and thermodynamic perfect degree are derived, respectively. The results show that these exergy indexes should be used integratively, and in the whole system the location of maximum exergy loss ratio is the compressor, while the location of minimum exergy efficiency and thermodynamic perfect degree is the ground heat exchanger, so that the compressor and the ground heat exchanger should be primarily improved. The results also indicate that the exergy loss of a GSHP system for building heating mode is bigger than that of cooling mode, and the exergy efficiency of a whole GSHP system is obviously lower than those of its components for both building heating and cooling modes. Therefore, a comprehensive exergy analysis of a GSHP should be paid more attention to. The results may provide guidelines for the design and optimization of GSHP systems. 相似文献
14.
A specific exergy costing assessment of the integrated copper-chlorine cycle for hydrogen production
《International Journal of Hydrogen Energy》2020,45(56):31425-31439
In this study the specific exergy costing (SPECO) approach is employed on a four-step integrated thermochemical copper-chlorine (Cu Cl) cycle for hydrogen production for a second-law based assessment purposes. The Cu–Cl cycle is considered as one of the most environmentally benign and sustainable options of producing hydrogen and is thus investigated in this study due to its potential of ensuring zero greenhouse gas (GHG) emissions. Several conceptual Cu–Cl cycles have been exergoeconomically examined previously, however this study aims at investigating the four-step integrated Cu–Cl cycle developed at the Clean Energy Research Laboratory (CERL) at the Ontario Tech University thereby contributing to the thermo/exergoeconomic assessments of the thermochemical hydrogen production. In this study, the cycle is first thermodynamically modeled and simulated in a process simulation software (Aspen Plus) through exergy and energy approaches. The basic principles of the SPECO methodology are applied to the system and exergetic cost balances are performed for each cycle component. The exergetic costing of each cycle stream is then performed based on the cost balance equations. The purchased equipment cost and the hourly levelized capital cost rates for each cycle component is also obtained. The exergoeconomic factor, relative cost difference and exergy destruction cost rate for various cycle components are also evaluated. Moreover, the effect of several parameters on the total and hourly levelized capital cost rates is analyzed by performing a comprehensive sensitivity analysis. Based on the analysis, the exergy cost, the unit or specific exergy cost, and the unit costs of hydrogen are evaluated to be 6407.55 $/h, 0.042 $/MJ, and 4.94 $/kg respectively. 相似文献
15.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2018,43(9):4233-4243
In this paper, thermodynamic analysis and assessment of a novel geothermal energy based integrated system for power, hydrogen, oxygen, cooling, heat and hot water production are performed. This integrated process consists of (a) geothermal subsystem, (b) Kalina cycle, (c) single effect absorption cooling subsystem and (d) hydrogen generation and storage subsystems. The impacts of some design parameters, such as absorption chiller evaporator temperature, geothermal source temperature, turbine input pressure and pinch point temperature on the integrated system performance are investigated to achieve more efficient and more effective. Also, the impacts of reference temperature and geothermal water temperature on the integrated system performance are studied in detail. The energetic and exergetic efficiencies of the integrated system are then calculated as 42.59% and 48.24%, respectively. 相似文献
16.
Drying is a high‐energy‐intensive operation and an important step in the pasta production. In this study, exergy analysis of a four‐step drying system in a farfalle pasta production line using actual operational data obtained from a plant located in Izmir, Turkey, was performed. Exergy loss rates, evaporation rates, exergy efficiencies, and improvement in potential rates for each dryer section were determined in this drying system. The exergy efficiency values varied between 0.25% and 5.27% from the predrying to the final drying section. The exergy efficiency value for the entire drying system was calculated to be 2.96%, and the highest exergetic improvement in potential rate was 165.54 kW for the first dryer section. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
Splitting the exergy destruction into endogenous/exogenous and unavoidable/avoidable parts represents a new development in the exergy analysis of energy conversion systems. This splitting improves the accuracy of exergy analysis, improves our understanding of the thermodynamic inefficiencies and facilitates the improvement of a system.
An absorption refrigeration machine is used here as an application example. This refrigeration machine represents the most complex type of a refrigeration machine, in which the sum of physical and chemical exergy is used for each material stream. 相似文献
18.
《International Journal of Hydrogen Energy》2020,45(9):5608-5628
The present study develops a new solar and geothermal based integrated system, comprising absorption cooling system, organic Rankine cycle (ORC), a solar-driven system and hydrogen production units. The system is designed to generate six outputs namely, power, cooling, heating, drying air, hydrogen and domestic hot water. Geothermal power plants emit high amount of hydrogen sulfide (H2S). The presence of H2S in the air, water, soils and vegetation is one of the main environmental concerns for geothermal fields. In this paper, AMIS(AMIS® - acronym for “Abatement of Mercury and Hydrogen Sulphide” in Italian language) technology is used for abatement of mercury and producing of hydrogen from H2S. The present system is assessed both energetically and exergetically. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. The highest overall energy and exergy efficiencies are calculated to be 78.37% and 58.40% in the storing period, respectively. Furthermore, the effects of changing various system parameters on the energy and exergy efficiencies of the overall system and its subsystems are examined accordingly. 相似文献
19.
Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas 总被引:2,自引:0,他引:2
LNG technology has been in use since the 1960s. During the last 20 years the total cost of LNG technology has decreased by 30% due mainly to improvements of the liquefaction process and shipping. However, the regasification system has not been significantly improved. The paper presents a detailed advanced exergetic analysis of a novel co-generation concept that combines LNG regasification with the generation of electricity. The analysis includes splitting the exergy destruction within each component into its unavoidable, avoidable, endogenous and exogenous parts as well as a detailed splitting of the avoidable exogenous exergy destruction. The results of the advanced exergetic analysis are confirmed through a sensitivity analysis. Finally, some suggestions for improving the overall system efficiency are developed. 相似文献
20.
Veena Chaudhary Rakesh P. Gakkhar 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2021,43(2):201-215
ABSTRACT This study investigates the merits of exergy analysis over energy analysis for small direct injection (DI) diesel engine using the blend of waste cooking oil biodiesel and petroleum diesel. Taguchi’s “L’ 16” orthogonal array has been used for the design of experiment. The engine tested at different engine speeds, load percentages, and blend ratios, using the waste cooking oil biodiesel. Basic performance parameters and fuel input exergy, exergetic efficiency (second law efficiency), exergy associated with heat transfer, exergy associated with the exhaust gas and destruction of exergy are calculated for each blend of waste cooking oil biodiesel and diesel. Results show that the optimum operating conditions for minimum brake-specific fuel consumption (BSFC) and exergy destruction are achieved when engine speed at 1900 rev/min, load percentage is 75%, and the engine is fueled with B40. 相似文献