首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Wind energy, as a reliable, natural and renewable electrical power supply, produces no emissions and so it is an excellent alternative to conventional, more heavily polluting fuels in the long term based on the worldwide concern about the environment and energy supply. Wind energy resources in China are affluent, but its distribution are uneven, centralized, and far from both the utility and the high electricity demand markets. This made China's onshore wind power development have such characteristics as large scale, high centralization and far transmission, which is different with that in Europe, where the characteristics are even distribution, decentralized. In past two decades, considering the economic, technical and environmental benefits of wind power, China has given priority to its development. Besides the dramatic growth of large scale grid-connected wind power, household-scale wind power has been used most successfully in remote rural regions in China. Therefore, the development of wind power will be of great importance to alleviate the energy crisis and environmental pollution resulting from the rapid economic growth of China in the future. In this paper, the current development of wind energy utilization in China is investigated, and some critical barriers are discussed. Finally, the perspective of wind energy utilization is presented, where focuses are placed on seven wind power bases.  相似文献   

2.
关于中国风能资源储量的质疑   总被引:3,自引:0,他引:3  
朱成章 《中外能源》2010,15(4):34-38
目前普遍认为中国的风能资源为20×10^8kW。1980年第一次风能资源普查得出我国风能资源储量约为1.6×10^8kW的结论。1984年9月至1987年7月开展了第二次风能资源详查,1995年国家气象局对外公布.我国陆上10m高度处风能资源总储量为32.26×10^8kW,技术可开发资源量为2.53×10^8kW。2004年进行了第三次陆上风能资源普查。结果为我国陆上风能资源总储量43.5×10^8kW,其中技术可开发量为2.97×10^8kW。近期中国气象局公布.我国风能开发潜力逾25×10^8kW,5-25m水深线以内近海区域海平面以上50m高度可装机2×10^8kW,推翻了此前我国海上风能资源是陆上3倍的说法。中国风能资源的前3次普查都只是对陆上的风能资源进行了测算.而且只测算了陆上10m高度处风能资源的理论蕴藏量,再根据理论蕴藏量推算出风能的技术可开发资源量.数据是很粗略的。陆上风能技术可开发资源量估计偏高,风能资源经济可开发量尚需很好地测算,海上风能资源评估缺乏依据,风力发电机组高度和风电的年可利用小时数也存在问题。我国要加强风能资源利用的研究,研究重点应放在风能资源的经济可开发量、气候变化对风能资源的影响、台风和灾害性天气对风电开发的影响、能够用于发展风电的土地面积等方面。  相似文献   

3.
The interest for the exploitation of the offshore wind energy is growing in Europe, where man land use is very high resulting in strong limitation to the installation of onshore wind farms. The today offshore operating wind power is 12 MW, with two wind farms in Denmark and one in Netherlands; it starts to be significant (0.6%) in terms of the onshore power, 2000 MW in Europe.In the world the onshore installed wind power is exceeding 4000 MW, but not so much up to now has been done on the offshore area outside Europe.The European four years experience on the prototypical offshore wind farms looks significantly promising and suggests to promote a similar approach in many densely populated coastal countries in the world with high electricity demand.Results of studies are presented on the offshore wind potential in the European countries and of the tentative evaluation for the Mediterranean basin, and the seas of USA and China. A review is made of the offshore applications, particularly for the Nothern European seas.Economy and environmental trends are illustrated in parallel to those of maturing offshore technology. It is suggested to prepare an action plan to promote the development of the offshore applications in the world context.  相似文献   

4.
Offshore wind power comprises a relatively new challenge for the international wind industry with a demonstration history of around twenty years and a ten-year commercial history for large, utility-scale projects. By comparison to other forms of electric power generation, offshore wind energy is generally considered to have relatively benign effects on the marine environment. However, offshore projects include platforms, turbines, cables, substations, grids, interconnection and shipping, dredging and associated construction activity. The Operation & Maintenance (O&M) activities include the transport of employees by vessel or helicopter and occasional hardware retrofits. Therefore, various impacts are incurred in the construction, operation and decommissioning phases; mainly the underwater noise and the impacts on the fauna. Based on the fact that in many of the aforementioned issues there are still serious environmental uncertainties, contradictive views and emerging research, the present work intents to provide a thorough literature review on the environmental and social impacts of offshore wind energy projects in comparison with the onshore counterparts.  相似文献   

5.
In the past 20 years, China has paid significant attention to wind power. Onshore wind power in China has experienced tremendous growth since 2005, and offshore wind power development has been on-going since 2009. In 2010, with a total installed wind power capacity of 41.8 GW, China surpassed the U.S. as the country with the biggest wind power capacity in the world. By comparing the wind power situations of three typical countries, Germany, Spain, and Denmark, this paper provides a comprehensive evaluation and insights into the prospects of China’s wind power development. The analysis is carried out in four aspects including technology, wind resources, administration and time/space frame. We conclude that both German and Spanish have been growing rapidly in onshore capacity since policy improvements were made. In Denmark, large financial subsidies flow to foreign markets with power exports, creating inverse cost-benefit ratios. Incentives are in place for German and Danish offshore wind power, while China will have to remove institutional barriers to enable a leap in wind power development. In China, cross-subsidies are provided from thermal power (coal-fired power generation) in order to limit thermal power while encouraging wind power. However, the mass installation of wind power capacity completely relies on power subsidies. Furthermore, our study illustrates that capacity growth should not be the only consideration for wind power development. It is more important to do a comprehensive evaluation of multi-sectorial efforts in order to achieve long-term development.  相似文献   

6.
Wind energy has experienced dramatic growth over the past decade. A small fraction of this growth has occurred offshore, but as the best wind resources become developed onshore, there is increasing interest in the development of offshore winds. Like any form of power production, offshore wind energy has both positive and negative impacts. The potential negative impacts have stimulated a great deal of opposition to the first offshore wind power proposals in the U.S. and have delayed the development of the first offshore wind farm in the U.S. Here we discuss the costs and benefits of offshore wind relative to onshore wind power and conventional electricity production. We review cost estimates for offshore wind power and compare these to estimates for onshore wind and conventional power. We develop empirical cost functions for offshore wind based on publicly reported projects from 2000 to 2008, and describe the limitations of the analysis. We use this analysis to inform a discussion of the tradeoffs between conventional, onshore and offshore wind energy usage.  相似文献   

7.
The Chinese government has made an important effort to diversify the country's energy mix and exploit different sources of renewable energy. Although China's installed wind power capacity has undergone a dramatic expansion over the past six years, the electricity generated from wind power has not increased as expected. Meanwhile, operational risks, such as high generation cost, mismatch between capacity and generation, intermittent wind power generation, power grid construction lag, deficient policy, and operation mechanism, have become increasingly prominent. If not controlled, these risks will negatively affect wind power development in China. Therefore, this paper established a quantitative analysis model of wind power operation management risk from two aspects, feed-in tariff and grid electricity (electricity being connected to the grid), based on an analysis of wind power operation management risk in China. Moreover, this study quantitatively assessed the risk of the operational management of a wind farm in Inner Mongolia. Finally, corresponding risk control strategies for the healthy development of wind power generation in China were proposed.  相似文献   

8.
我国风力发电发展现状和问题分析   总被引:1,自引:0,他引:1  
能源危机的日趋严重,优化能源结构、发展清洁环保的可再生能源迫在眉睫。风能是一种清洁环保的可再生能源,随着国家政策的支持和风力发电技术的不断发展,风力发电越来越得到人们的重视,并将在新能源发电中扮演重要的角色。概述了我国风能资源的储量和分布,介绍了近年来我国风力发电的总体情况、各省(自治区)风力发电的发展概况以及我国风电企业的发展现状,最后指出了我国风力发电目前出现的一些问题,并进行了分析。  相似文献   

9.
This paper examines the current situation of wind industry development, evaluates the potentials of GHG mitigation and identifies the key determinants of scaling up wind power deployment in China. China has doubled its wind capacity every year for the past 4 years, the total installed capacity reached 12 Gigawatts (GW) and surpassed the 10-GW target 2 years ahead of schedule in the national plan for renewable energy development [38], [71], [87],and would reach 100–120 GW by 2020 according to the government’s new energy plan. It may become the biggest wind power generation and wind turbines manufacturing country of the world in the next years if the abundant wind resources and enormous domestic market can be harnessed with appropriate policies and efficient technology. The recent positive move in vigorous development of wind power in China implies that the total installed capacity will far exceed the targets of the government’s 2007 renewable energy plan. However, the prosperous Chinese wind market has also revealed some worrisome signals and weakness [28], [58], such as low capacity factor and frequent outage of wind farms, inadequate grid infrastructure, long distance transmission, low quality of turbines, adverse price bidding, nepotism in wind farm developer selection process and regulatory uncertainty and policy inconsistency which all conspire to hinder effective power generation in the massively new installed wind capacities. A coherent policy framework is required for creating enabling environment for accelerating wind energy penetration and state-of-art technology deployment in the country. It is argued that institutional, financial and technical capacity will need to be cemented to exploit the huge potentials of wind resources to meet the rapidly growing demand for electricity in China in the coming decades with minimised environmental implications.  相似文献   

10.
Based on independent studies, this paper focuses on the significant discrepancy of 15 GW between the installed onshore wind generation capacity and what has been actually connected to the power network to reveal the challenges in meeting the Chinese renewable energy target. The recent accidents in Chinese North-Western transmission network (in February–April, 2011) demonstrated the urgent need for a fundamental review of the Chinese renewable energy policy. Offshore wind has been identified as the most feasible alternative to onshore wind to help deliver electricity to Eastern China during the summer peak time. By investigating and summarizing first hand experiences of participation in the Chinese renewable market, the authors provide the economic figures of the first cohort of Chinese offshore wind schemes. Large state owned enterprises (SOE) are dominating the offshore wind development, repeating their previous practices on the land. While this paper acknowledges the critical role of offshore wind generation in meeting Chinese renewable energy targets, it envisages an installed offshore capacity of approximately 2000 MW by 2015, much less than the 10000 MW governmental estimation, which can be attributed to the lack of detailed energy policy, network constraints, offshore wind installation difficulties and quality issues in the manufacture of turbines.  相似文献   

11.
Promoting wind power is a long-term strategy of China to respond to both energy shortage and environmental pollution. Stimulated by various incentive policies, wind power generation in China has achieved tremendous growth, with the cumulative installed capacity being the largest worldwide for five consecutive years since 2010. However, obstructed by various barriers, wind power provides only 2.6% of national electricity generation in China, despite the strong support from the government. From a socio-technical transition perspective, this paper aims to systematically analyze the barriers hindering the further development of China's wind power. A wind power niche model is established to illustrate the complex interactions among actors in the wind power industry and electricity supply regime. Then, qualitative content analysis is adopted to process the related evidence and data, and four categories of socio-technical barriers are identified, including technology, governance, infrastructure and culture barriers. The study shows that various interrelated barriers form a blocking mechanism which prohibits the further development of wind power in China. Policy suggestions are proposed to eliminate the barriers and further empower the wind power niche. The lesson learned from China can offer useful references for other economies to promote wind power industries of their own.  相似文献   

12.
Indian Economy is growing at a healthy pace during the last few years. To sustain this growth, power sector needs to build additional generation capacity. However, continued dependence on fossil fuels to power the growth of electricity generation capacity, is hardly sustainable. Renewable Energy source forms a miniscule portion (25 GW,∼12%) of India's overall power generation today (202 GW). The share of wind energy (17 GW) is 67% of the total renewable energy basket. But the contribution from offshore wind farms is non-existent, as all the wind energy generated in India is only through onshore wind farms. India needs a policy framework to encourage the development of offshore wind farms. Several European countries have effective offshore wind energy policies that have helped them to accelerate the growth of their offshore wind energy sector. This paper does an exhaustive literature survey, to identify 21 building blocks of a successful offshore wind energy policy initiative adopted by select European countries, which have been classified under 5 broad categories—Government support, Fiscal and quota based incentives, Availability of local expertise, Capital for investments and Building an enabling ecosystem, which can be leveraged by India to articulate its own offshore wind energy policy.  相似文献   

13.
T. Y. Liu  P. J. Tavner  Y. Feng  Y. N. Qiu 《风能》2013,16(5):786-803
Rapid wind power development in China has attracted worldwide attention. The huge market potential and fast development of wind turbine manufacturing capacity are making China a world leader in wind power development. In 2010, with the newly installed wind power capacity and the cumulative installed capacity, China was ranked first in the world. In 2009, China also constructed and commissioned its first large offshore wind farm near Shanghai. Following earlier papers reviewing the state of China's onshore wind industry, this paper presents a broader perspective and up‐to‐date survey of China's offshore wind power development, making comparisons between the developments in the rest of the world and China, to draw out similarities and differences and lessons for the China offshore wind industry. The paper highlights six important aspects for China's offshore wind development: economics, location, Grid connection, technological development, environmental adaptation and national policies. The authors make recommendations for mitigating some outstanding issues in these six aspects for the future development of China's offshore wind resource. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Conventional power generation mainly depends on natural gas and diesel oil in Brunei Darussalam. The power utility company is now thinking of power generation using natural wind. In this paper, wind energy, being one of the most readily available renewable energy sources, was studied. The wind characteristic, velocity and directions were studied using Weibull distribution based on the measurement of wind speed at two different locations in Brunei Darussalam. These wind speed distributions were modeled using the Wind Power program. The wind rose graph was obtained for the wind direction to analyze the wind power density onshore and offshore. Based on this analysis, it has been found that the wind speed of 3 to 5 m/s has a probability of occurrence of 40%. Besides, the annual energy production at a wind speed of 5 m/s has been found to be in the range between 1000 and 1500 kWh for both the locations in Brunei Darussalam.  相似文献   

15.
Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO2. To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power.  相似文献   

16.
A development in wind energy technology towards higher nominal power of the wind turbines is related to the shift of the turbines to better wind conditions. After the shift from onshore to offshore areas, there has been an effort to move further from the sea coast to the deep water areas, which requires floating windmills. Such a concept brings additional environmental impact through higher material demand. To evaluate additional environmental burdens and to find out whether they can be rebalanced or even offset by better wind conditions, a prospective life cycle assessment (LCA) study of one floating concept has been performed and the results are presented in this paper. A comparison with existing LCA studies of conventional offshore wind power and electricity from a natural gas combined cycle is presented. The results indicate similar environmental impacts of electricity production using floating wind power plants as using non-floating offshore wind power plants. The most important stage in the life cycle of the wind power plants is the production of materials. Credits that are connected to recycling these materials at the end-of-life of the power plant are substantial.  相似文献   

17.
The paper provides an overview of the historical development of wind energy technology and discusses the current status of grid-connected as well as stand-alone wind power generation worldwide. During the last decade of the 20th century, grid-connected wind capacity worldwide has doubled approximately every three years. Due to the fast market development, wind turbine technology has experienced an important evolution over time. An overview of the different design approaches is given and issues like power grid integration, economics, environmental impact and special system applications, such as offshore wind energy, are discussed. Due to the complexity of the wind energy technology, however, this paper mainly aims at presenting a brief overview of the relevant wind turbine and wind project issues. Therefore, detailed information on further readings and related organisations is included.  相似文献   

18.
This study aims to quantify the socio-economic and environmental impacts of producing electricity by wind power plants for the US electricity mix. To accomplish this goal, all direct and supply chain-related impacts of different onshore and offshore wind turbines are quantified using a hybrid economic input-output-based triple bottom line (TBL) life cycle assessment model. Furthermore, considering TBL sustainability implications of each onshore and offshore wind energy technology, a multi-criteria decision-making tool which is coupled with Monte Carlo simulation is utilised to find the optimal choice of onshore and offshore wind energy. The analysis results indicate that V90-3.0 MW wind turbines have lower impacts than V80-3.0 MW for both socio-economic and environmental indicators. The Monte Carlo simulation results reveal that when environmental issues are more important than socio-economic impacts, V90-3.0 MW offshore is selected among the alternatives.  相似文献   

19.
Wind energy is considered to be a very promising alternative for power generation because of its tremendous environmental, social, and economic benefits. Electrical power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of those facilities, therefore, affect the power system reliability in a manner different from that of the conventional systems. This paper is focused on the development of suitable models for wind energy conversion systems, in adequacy assessments of generating systems, using wind energy. These analytical models can be used in the conventional generating system adequacy assessment utilizing analytical or Monte Carlo state-sampling techniques. This paper shows that a five-state wind energy conversion system model can be used to provide a reasonable assessment of the practical power system adequacy studies, using an analytical method, or a state-sampling simulation approach.  相似文献   

20.
风力发电发展简史及各类型风力机比较概述   总被引:2,自引:0,他引:2  
当今对风能的利用,主要是用来发电,通过对风能发电历史的回顾和对水平轴和垂直轴风力发电机的比较,使人们对垂直轴风力发电机有了更加广泛的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号