首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen is an energy carrier able to be produced from domestic, zero-carbon sources and consumed by zero-pollution devices. A transition to a hydrogen-based economy could therefore potentially respond to climate, air quality, and energy security concerns. In a hydrogen economy, both mobile and stationary energy needs could be met through the reaction of hydrogen (H2) with oxygen (O2). This study applies a full fuel cycle approach to quantify the energy, greenhouse gas emissions (GHGs), and cost implications associated with a large transition to hydrogen in the United States. It explores a national and four metropolitan area transitions in two contrasting policy contexts: a “business-as-usual” (BAU) context with continued reliance on fossil fuels, and a “GHG-constrained” context with policies aimed at reducing greenhouse gas emissions. A transition in either policy context faces serious challenges, foremost among them from the highly inertial investments over the past century or so in technology and infrastructure based on petroleum, natural gas, and coal. A hydrogen transition in the USA could contribute to an effective response to climate change by helping to achieve deep reductions in GHG emissions by mid-century across all sectors of the economy; however, these reductions depend on the use of hydrogen to exploit clean, zero-carbon energy supply options.  相似文献   

2.
Plug-in hybrid electric vehicle (PHEV) technology is receiving attention as an approach to reducing US dependency on foreign oil and greenhouse gas (GHG) emissions from the transportation sector. PHEVs require large batteries for energy storage, which affect vehicle cost, weight, and performance. We construct PHEV simulation models to account for the effects of additional batteries on fuel consumption, cost, and GHG emissions over a range of charging frequencies (distance traveled between charges). We find that when charged frequently, every 20 miles or less, using average US electricity, small-capacity PHEVs are less expensive and release fewer GHGs than hybrid electric vehicles (HEVs) or conventional vehicles. For moderate charging intervals of 20–100 miles, PHEVs release fewer GHGs, but HEVs have lower lifetime costs. High fuel prices, low-cost batteries, or high carbon taxes combined with low-carbon electricity generation would make small-capacity PHEVs cost competitive for a wide range of drivers. In contrast, increased battery specific energy or carbon taxes without decarbonization of the electricity grid would have limited impact. Large-capacity PHEVs sized for 40 or more miles of electric-only travel do not offer the lowest lifetime cost in any scenario, although they could minimize GHG emissions for some drivers and provide potential to shift air pollutant emissions away from population centers. The tradeoffs identified in this analysis can provide a space for vehicle manufacturers, policymakers, and the public to identify optimal decisions for PHEV design, policy and use. Given the alignment of economic, environmental, and national security objectives, policies aimed at putting PHEVs on the road will likely be most effective if they focus on adoption of small-capacity PHEVs by urban drivers who can charge frequently.  相似文献   

3.
One way to reduce greenhouse gas emissions from the transportation sector is to replace fossil fuels by biofuels. However, production of biofuels also generates greenhouse gas emissions. Energy and greenhouse gas balances of transportation biofuels suitable for large-scale production in Finland have been assessed in this paper. In addition, the use of raw materials in electricity and/or heat production has been considered. The overall auxiliary energy input per energy content of fuel in biofuel production was 3–5-fold compared to that of fossil fuels. The results indicated that greenhouse gas emissions from the production and use of barley-based ethanol or biodiesel from turnip rape are very probably higher compared to fossil fuels. Second generation biofuels produced using forestry residues or reed canary grass as raw materials seem to be more favourable in reducing greenhouse gas emissions. However, the use of raw materials in electricity and/or heat production is even more favourable. Significant uncertainties are involved in the results mainly due to the uncertainty of N2O emissions from fertilisation and emissions from the production of the electricity consumed or replaced.  相似文献   

4.
The conversion of wood to synthetic natural gas (SNG) via gasification and catalytic methanation is a renewable close to commercialization technology that could substitute fossil fuels and alleviate global warming. In order to assure that it is beneficial from the environmental perspective, a cradle to grave life cycle assessment (LCA) of SNG from a first-of-its-kind polygeneration unit for heating, electricity generation, and transportation was conducted. These SNG systems were compared to fossil and conventional wood reference systems and environmental benefits from their substitution evaluated. Finally, we conduct sensitivity analysis for expected technological improvements and factors that could decrease environmental performance.It is shown that substituting fossil technologies with SNG systems is environmentally beneficial with regard to global warming and for selected technologies also with regard to aggregated environmental impacts. On the condition that process heat is used efficiently, technological improvements such as increased efficiency and denitrification could further increase this advantage. On the other hand, lower GHG emissions and aggregated impacts are partly compensated by other environmental effects, e.g. eutrophication, ecotoxicity, and respiratory disease caused by inorganics. Since more efficient alternatives exist for the generation of heat and electricity from wood, it is argued that SNG is best used for transportation. In the light of a growing demand for renewable transportation fuels and commercial scale technological development being only in its initial stage, the production of SNG from wood seems to be a promising technology for the near future.  相似文献   

5.
In 2009 approx. 40 Mt of palm oil were produced globally. Growing demand for palm oil is driven by an increasing human population as well as subsidies for biodiesel and is likely to increase further in coming years. The production of 1 t crude palm oil requires 5 t of fresh fruit bunches (FFB). On average processing of 1 t FFB in palm oil mills generates 0.23 t empty fruit bunches (EFB) and 0.65 t palm oil mill effluents (POME) as residues. In this study it is assumed that land use change does not occur. In order to estimate the environmental impacts of palm oil production a worst and a best case scenario are assessed and compared in the present study using 1000 kg of FFB as functional unit.The production and treatment of one t FFB causes more than 460 kg CO2eq in the worst case scenario and 110 kg CO2eq in the best case scenario. The significant greenhouse gas (GHG) emission reduction is achieved by co-composting residues of the palm oil mill. Thus treating those residues appropriately is paramount for reducing environmental impacts particularly global warming potential (GWP) and eutrophication potential (EP).Another important contributor to the EP but also to the human toxicity potential (HTP) is the biomass powered combined heat and power (CHP) plant of palm oil mills. Frequently CHP plants of palm oil mills operate without flue gas cleaning. The CHP plant emits heavy metals and nitrogen oxides and these account for 93% of the HTP of the advanced palm oil production system, of which heavy metal emissions to air are responsible for 79%. The exact emission reduction potential from CHP plants could not be quantified due to existing data gaps, but it is apparent that cleaning the exhaust gas would reduce eutrophication, acidification and toxicity considerably.  相似文献   

6.
The paper highlights the importance of hydrogen as a promising alternative for future aircraft fuel, with respect to reduced environmental impact, increased sustainability, high energy content and favorable combustion kinetics, since the rapid growth and dependence of aircraft propulsion on fossil fuels are unsustainable. This paper compares the environmental impact of hydrogen and kerosene-fueled aircraft, in terms of greenhouse gas emissions and other emission comparisons. Sample flights from Toronto to Montreal, and Calgary to London are examined. Emissions from a conventional aircraft are estimated and compared with the LH2 (liquid hydrogen) aircraft. The environmental benefits and drawbacks of these systems are presented from safety and storage perspectives. Radiative forcing factors that compare conventional aircraft and LH2 aircraft are included. It is shown that the amount of NOx, HC and CO emissions for the trips with conventional aircraft for Calgary is 171.4, 41.9 and 32.2 kg, while Montreal is 56.17, 2.43 and 21.9 kg, and London is 251.7, 5.1 and 39.2 kg, respectively. These results are compared against hydrogen propulsion to show the promising capabilities of hydrogen as an aircraft fuel.  相似文献   

7.
As the European Union greenhouse gas emission trading scheme (ETS) is emerging, it seems interesting to look back on previous experiments and to bring together a few elements of reflection about the pertinence of ETS as a new policy tool to regulate industrial pollution. So far, several regulatory tools have been used to decrease pollution. This article focuses on two of them, command-and-control (CAC) and ETS. There is no simple answer to which one is more efficient. It depends strongly on the context. Given a few elements outlined in this paper, the choice of an ETS to abate industrial emissions of greenhouse gases in the European Union (EU) can be considered pertinent. But, ultimately, what makes a scheme environmentally efficient is not the tool in itself (ETS or CAC) but the ambition of the target. Hence the design of the National Allocation Plans setting the emission caps are of paramount importance. They will make the EU ETS either a useless mess or an effective climate change mitigation policy tool.  相似文献   

8.
The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.  相似文献   

9.
Life cycle analysis is considered to be a valuable tool for decision making towards sustainability. Life cycle energy and environmental impact analysis for conventional transportation fuels and alternatives such as biofuels has become an active domain of research in recent years. The present study attempts to identify the most reliable results to date and possible ranges of life cycle fossil fuel use, petroleum use and greenhouse gas emissions for various road transportation fuels in China through a comprehensive review of recently published life cycle studies and review articles. Fuels reviewed include conventional gasoline, conventional diesel, liquefied petroleum gas, compressed natural gas, wheat-derived ethanol, corn-derived ethanol, cassava-derived ethanol, sugarcane-derived ethanol, rapeseed-derived biodiesel and soybean-derived biodiesel. Recommendations for future work are also discussed.  相似文献   

10.
Biomass can deliver significant greenhouse gas reductions in electricity, heat and transport fuel supply. However, our biomass resource is limited and should be used to deliver the most strategic and significant impacts. The relative greenhouse gas reduction merits of different bioenergy systems (for electricity, heat, chemical and biochar production) were examined on a common, scientific basis using consistent life cycle assessment methodology, scope of system and assumptions. The results show that bioenergy delivers substantial and cost-effective greenhouse gas reductions. Large scale electricity systems deliver the largest absolute reductions in greenhouse gases per unit of energy generated, while medium scale wood chip district heating boilers result in the highest level of greenhouse gas reductions per unit of harvested biomass. However, ammonia and biochar systems deliver the most cost effective carbon reductions, while biochar systems potentially deliver the highest greenhouse gas reductions per unit area of land.The system that achieves the largest reduction in greenhouse gases per unit of energy does not also deliver the highest greenhouse gas reduction per unit of biomass. So policy mechanisms that incentivize the reductions in the carbon intensity of energy may not result in the best use of the available resource.Life cycle assessment (LCA) is a flexible tool that can be used to answer a wide variety of different policy-relevant, LCA “questions”, but it is essential that care is taken to formulate the actual question being asked and adapt the LCA methodology to suit the context and objective.  相似文献   

11.
The US transportation sector is a major contributor to global greenhouse gas (GHG) emissions. As such, policymakers and stakeholder groups have proposed a number of policy instruments aimed at reducing these emissions. In order to fully evaluate the effectiveness of these policies, policymakers must consider both the direct responses associated with policy actions, and the indirect responses that occur through complex relationships within socioeconomic systems. In cases where multiple policy instruments are employed, these indirect effects create policy interactions that are either complementary or competing; policymakers need to understand these interactions in order to leverage policy synergies and manage policy conflicts. Analysis of these indirect effects is particularly difficult in the transportation sector, where system boundaries are uncertain and feedback among systems components can be complicated. This paper begins to address this problem by applying systems dynamics tools (in particular causal loop diagrams) to help identify and understand the role of feedback effects on transportation-related GHG reduction policies. Policymakers can use this framework to qualitatively explore the impacts of various policy instruments, as well as identify important relationships that can be later included in quantitative modeling approaches.  相似文献   

12.
Multiple alternative vehicle and fuel options are being proposed to alleviate the threats of climate change, urban air pollution, and oil dependence caused by the transportation sector. We report here on the results from an extensive computer model developed over the last decade to simulate and compare the societal benefits of deploying various alternative transportation options including hybrid electric vehicles and plug-in hybrids fueled by gasoline, diesel fuel, natural gas, and ethanol, and all-electric vehicles powered by either batteries or fuel cells. These simulations compare the societal benefits over a 100-year time horizon of each vehicle/fuel combination in terms of reduced local air pollution, greenhouse gas pollution, and oil consumption compared to gasoline cars.  相似文献   

13.
Since 2003 India has been actively promoting the cultivation of Jatropha on unproductive and degraded lands (wastelands) for the production of biodiesel suitable as transportation fuel. In this paper the life cycle energy balance, global warming potential, acidification potential, eutrophication potential and land use impact on ecosystem quality is evaluated for a small scale, low-input Jatropha biodiesel system established on wasteland in rural India. In addition to the life cycle assessment of the case at hand, the environmental performance of the same system expanded with a biogas installation digesting seed cake was quantified. The environmental impacts were compared to the life cycle impacts of a fossil fuel reference system delivering the same amount of products and functions as the Jatropha biodiesel system under research. The results show that the production and use of Jatropha biodiesel triggers an 82% decrease in non-renewable energy requirement (Net Energy Ratio, NER = 1.85) and a 55% reduction in global warming potential (GWP) compared to the reference fossil-fuel based system. However, there is an increase in acidification (49%) and eutrophication (430%) from the Jatropha system relative to the reference case. Although adding biogas production to the system boosts the energy efficiency of the system (NER = 3.40), the GWP reduction would not increase (51%) due to additional CH4 emissions. For the land use impact, Jatropha improved the structural ecosystem quality when planted on wasteland, but reduced the functional ecosystem quality. Fertilizer application (mainly N) is an important contributor to most negative impact categories. Optimizing fertilization, agronomic practices and genetics are the major system improvement options.  相似文献   

14.
Jurisdictions are looking into mixing hydrogen into the natural gas (NG) system to reduce greenhouse gas (GHG) emissions. Earlier studies have focused on well-to-wheel analysis of H2 fuel cell vehicles, using high-level estimates for transportation-based emissions. There is limited research on transportation emissions of hythane, a blend of H2 and NG used for combustion. An in-depth analysis of the pipeline transportation system was performed for hythane and includes sensitivity and uncertainty analyses. When hythane with 15% H2 is used, transportation GHG emissions (gCO2eq/GJ) increase by 8%, combustion GHG emissions (gCO2eq/GJ) decrease by 5%, and pipeline energy capacity (GJ/hr) decreases by 11% for 50–100 million m3/d pipelines. Well-to-combustion (WTC) emissions increase by 2.0% without CCS, stay the same with a 41% CCS rate, decrease by 2.8% for the 100% CCS scenario, and decrease by 3.6% in the optimal CO2-free scenario. While hythane contains 15% H2 by volume only 5% of the gas’ energy comes from H2, limiting its GHG benefit.  相似文献   

15.
An overview is presented on the last decade of geothermal heating by ground source heat pumps (GSHPs) in Europe. Significant growth rates can be observed and today's total number of GSHP systems is above 1 million, with an estimate of about 1.25 million mainly used for residential space heating in 2011. These systems are counted among renewable energy technologies, though heat pump operation typically consumes electricity and thus only a fraction of the energy produced is actually greenhouse gas (GHG) emission free. Consequently, only in the most mature markets of the Scandinavian countries and in Switzerland, calculated emission savings reach more than 1% compared to standard heatings. However, Sweden shows that more than 35% is possible, with about one third of these systems in Europe concentrated in this country. Our calculations demonstrate the crucial role of country-specific heating practices, substituted heat mix and primary electricity mix for country-specific emission savings. For the nineteen European countries studied in 2008, 3.7 Mio t CO2 (eq.) are saved in comparison to conventional practice, which means about 0.74% on average. This reveals that many countries are at an early stage with great potential for the future, but even if the markets would be fully saturated, this average would barely climb to about 30%. These numbers, however, take the current conditions as reference, and when extrapolated to the future can be expected to improve by greener electricity production and increased heat pump performance.  相似文献   

16.
The study was aimed to investigate the effects of different factors (such as acid concentration, cell potential, temperature, coal types, and geometric area of the membrane) on the coal slurry electrolysis and hydrogen evolution. It was observed that all of the above factors affected hydrogen production upon completion of the electrolysis. The results revealed that an increase in the initial acid concentration up to 5.0 M brought about an increase in the current density and hydrogen evolution. However, the higher the acid concentration was taken (>7.0 M) then the lower the current density and hydrogen evolution were, which resulted in significant change due to the agglomeration of coal samples and stuck on the electrode surface.Furthermore, the CO2 evolution (14 ml) was observed only at high temperature (100 °C) and high (2.0 V) cell potential when the H2 amount was 776 ml. The coal type was observed to have influenced the electrolysis.  相似文献   

17.
Life cycle assessment (LCA) is the standard approach used to evaluate the greenhouse gas (GHG) benefits of biofuels. However, the need for the appropriate use of LCA in policy contexts is highlighted by recent findings that corn-based ethanol may actually increase GHG emissions. This is in contrary to most existing LCA results. LCA estimates can vary across studies due to heterogeneities in inputs and production technology. Whether marginal or average impacts are considered can matter as well. Most important of all, LCA is product-centered. The determination of the impact of biofuels expansion requires a system wide approach (SWA) that accounts for impacts on all affected products and processes.This paper presents both LCA and SWA for ethanol based on Iowa corn. LCA was conducted in several different ways. Growing corn in rotation with soybean generates 35% less GHG emissions than growing corn after corn. Based on average corn production, ethanol's GHG benefits were lower in 2007 than in 2006 because of an increase in continuous corn in 2007. When only additional corn was considered, ethanol emitted about 22% less GHGs than gasoline. SWA was applied to two simple cases. Using 2006 as a baseline and 2007 as a scenario, corn ethanol's benefits were about 20% of the emissions of gasoline. If geographical limits are expanded beyond Iowa, then corn ethanol could generate more GHG emissions than gasoline. These results highlight the importance of boundary definition for both LCA and SWA.  相似文献   

18.
The purpose of this paper is to conduct a parametric study to show the best steam to carbon ratio that produces the maximum system performance of an integrated gasifier for hydrogen production. The study focuses on the energy and exergetic efficiency of the system and hydrogen production. The work is completed using computer simulation models in Engineering Equation Solver software package. This software is used for its extensive thermodynamic properties library. An equilibrium based model is used to determine the performance of the system. The data is presented in graphs which show the chemical composition in molar fractions of the syngas, the overall energy and exergy efficiency of the system, and the hydrogen production rates. A study of these parameters is conducted by varying the steam to carbon ratio entering the gasifier and the ambient temperature. It is observed that the higher the steam to carbon ratio that is achieved the more hydrogen and more power the plant is able to produce. Because of this, the exergy and energy efficiency of the system increases as the steam to carbon ratio increases as well. It is also observed that the system favors a lower ambient temperature for maximum exergy efficiency and hydrogen production.  相似文献   

19.
The cost of hydrogen delivery for transportation accounts for most of the current H2 selling price; delivery also requires substantial amounts of energy. We developed harmonized techno-economic and life-cycle emissions models of current and future H2 production and delivery pathways. Our techno-economic analysis of dispensed H2 costs guided our selection of pathways for the life-cycle analysis. In this paper, we present the results of market expansion scenarios using existing capabilities (for example, those that use H2 from steam methane reforming, chlor-alkali, and natural gas liquid cracker plants), as well as results for future electrolysis plants that use nuclear, solar, and hydroelectric power. Reductions in greenhouse gas emissions for fuel cell electric vehicles compared to conventional gasoline pathways vary from 40% reduction for fossil-derived H2 to 20-fold for clean H2. Supplemental tables with greenhouse gas emissions data for each step in the H2 pathways enable readers to evaluate additional scenarios.  相似文献   

20.
This study addresses economic aspects of introducing renewable technologies in place of fossil fuel ones to mitigate greenhouse gas emissions. Unlike for traditional fossil fuel technologies, greenhouse gas emissions from renewable technologies are associated mainly with plant construction and the magnitudes are significantly lower. The prospects are shown to be good for producing the environmentally clean fuel hydrogen via water electrolysis driven by renewable energy sources. Nonetheless, the cost of wind- and solar-based electricity is still higher than that of electricity generated in a natural gas power plant. With present costs of wind and solar electricity, it is shown that, when electricity from renewable sources replaces electricity from natural gas, the cost of greenhouse gas emissions abatement is about four times less than if hydrogen from renewable sources replaces hydrogen produced from natural gas. When renewable-based hydrogen is used in a fuel cell vehicle instead of gasoline in a IC engine vehicle, the cost of greenhouse gas emissions reduction approaches the same value as for renewable-based electricity only if the fuel cell vehicle efficiency exceeds significantly (i.e., by about two times) that of an internal combustion vehicle. It is also shown that when 6000 wind turbines (Kenetech KVS-33) with a capacity of 350 kW and a capacity factor of 24% replace a 500-MW gas-fired power plant with an efficiency of 40%, annual greenhouse gas emissions are reduced by 2.3 megatons. The incremental additional annual cost is about $280 million (US). The results provide a useful approach to an optimal strategy for greenhouse gas emissions mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号