首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last 10 years, more than 15 GW of wind power (Asociación Empresarial Eólica (Spanish Wind Energy Association), Nota de prensa (Press release) 17 de enero de 2008. http://www.aeeolica.org/doc/NP_080117_Espana_supera_los_15000_MW_eolicos.pdf) have been installed in Spain, of which more than 3.5 GW in 2007. Furthermore, plans are to reach 20 GW by 2010 and there are expectations of an installed capacity exceeding 40 GW by 2020. This article will present the innovative solutions for technical and economical integration that allow to reach such high level wind penetration objectives (the system peaks at around 44 GW and is almost isolated). It will be described how the regulation has evolved from a pure Feed-in-Tariff to a market+premium option, where technical and economic integration has been a priority. Today, approximately 97% of installed wind capacity accesses the Spanish wholesale electricity market. Market integration has been crucial, sending the correct signals to participants to look for the optimum technical solutions. Technical improvements have come from both wind power producers (fault-ride-through capabilities, visibility and controllability of wind power, power production forecasting, reactive power control) and the system operator (specific control centre dedicated to Renewable Energy Sources (RES), new security analysis tools, gaining technical confidence of wind capabilities).  相似文献   

2.
This article evaluates the first year of the Section 1603 Treasury cash grant program, which enables renewable power projects in the US to elect cash grants in lieu of the federal tax credits that are otherwise available. To date, the program has been heavily subscribed, particularly by wind power projects, which had received 86% of the nearly $2.6 billion in grants that had been disbursed as of March 1, 2010. As of that date, 6.2 GW of the 10 GW of new wind capacity installed in the US in 2009 had applied for grants in lieu of production tax credits. Roughly 2.4 GW of this wind capacity may not have otherwise been built in 2009 in the absence of the grant program; this 2.4 GW may have supported approximately 51,600 short-term full-time-equivalent (FTE) gross job-years in the US during the construction phase of these wind projects, and 3860 long-term FTE gross jobs during the operational phase. The program’s popularity stems from the significant economic value that it provides to renewable power projects, relative to the otherwise available tax credits. Although grants reward investment rather than efficient performance, this evaluation finds no evidence at this time of either widespread “gold-plating” or performance problems.  相似文献   

3.
Since 2005, there has been dramatic progress in China's wind power industry. The annual growth rate of newly constructed capacity reached a miracle of 105% and the total installed capacity has increased from 1.27 GW in 2005 to 44.73 GW in 2010, which has exceeded the target of China's energy long-term planning for 2020. During the 11th Five-Year-Plan (FYP), the Chinese government has issued a series of polices to promote and regulate the development of wind power industry, which is the underlying force driving its rapid development. This paper is a systematical review on the current status and policies of wind power industry in China. Firstly the current status including achievements and shortcomings is presented, and then the relevant polices and regulations released during the period of 11th FYP are reviewed. Meanwhile, the main approaches of the policies and regulations in promoting the development of wind power industry are discussed and the issues of the current policies are analyzed. Finally, the paper concludes on the perspectives of wind power policies in China.  相似文献   

4.
In this study, the potential of wind energy and assessment of wind energy systems in Turkey were studied. The main purpose of this study is to investigate the wind energy potential and future wind conversion systems project in Turkey. The wind energy potential of various regions was investigated; and the exploitation of the wind energy in Turkey was discussed. Various regions were analyzed taking into account the wind data measured as hourly time series in the windy locations. The wind data used in this study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2010. This paper reviews the assessment of wind energy in Turkey as of the end of May 2010 including wind energy applications. Turkey's total theoretically available potential for wind power is around 131,756.40 MW and sea wind power 17,393.20 MW annually, according to TUREB (TWEA). When Turkey has 1.5 MW nominal installed wind energy capacity in 1998, then this capacity has increased to 1522.20 MW in 2010. Wind power plant with a total capacity of 1522.20 MW will be commissioned 2166.65 MW in December 2011.  相似文献   

5.
This review paper presents an appraisal of renewable energy RE options in Egypt. An appraisal review of different REs is presented. The study shows that electric energy produced from REs in Egypt are very poor compared with other energy sources. The utilization of the renewable energies can also be a good opportunity to fight the desertification and dryness in Egypt which is about 60% of Egypt territory. The rapid growth of energy production and consumption is strongly affecting and being affected by the Egyptian economy in many aspects. It is evident that energy will continue to play an important role in the development of Egypt's economy in coming years. The total installed electricity generating capacity had reached around 22025 MW with a generating capacity reached 22605 MW at the end of 2007. Hydropower and coal has no significant potential increase. During the period 1981/82-2004/05 electricity generation has increased by 500% from nearly 22 TWh for the year 1981/1982 to 108.4 TWh in the year 2004/2005 at an average annual growth rate of 6.9%. Consequently, oil and gas consumed by the electricity sector has jumped during the same period from around 3.7 MTOE to nearly 21 MTOE. The planned installed capacity for the year 2011/2012 is 28813 MW and the required fuel (oil and gas) for the electricity sector is estimated to reach about 29 MTOE by the same year. The renewable energy strategy targets to supply 3% of the electricity production from renewable resources by the year 2010. Electrical Coverage Electrical energy has been provided for around 99.3% of Egypt's population, representing a positive sign for the welfare of the Egyptian citizen due to electricity relation to all development components in all walks of life. The article discusses perspectives of wind energy in Egypt with projections to generate ∼ 3.5 GWe by 2022, representing ∼9% of the total installed power at that time (40.2 GW). Total renewables (hydro + wind + solar) are expected to provide ∼7.4 GWe by 2022 representing ∼ 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development.  相似文献   

6.
Wind energy has become the major renewable energy source in Germany with an installed capacity of more than 20 GW and an annual output of about 40 TW h in 2007. In this paper we analyze the extent to which wind energy can replace fossil capacities based on wind injection and demand data for 2006 through June 2008. The results indicate that the wind potential in Germany will not allow a significant reduction of fossil capacities. We also assess the potential savings due to wind energy. The German market is modeled with and without wind input to estimate the net savings of fossil fuels in the observation period. We find that the cost-saving potential for electricity production is quite significant and exceeds the subsidies.  相似文献   

7.
The potential of on‐shore wind energy in Spain is assessed using a methodology based on a detailed characterization of the wind resource. To obtain such a characterization, high‐resolution simulations of the weather in Spain during 1 year are performed, and the wind statistics thus gathered are used to estimate the electricity‐generation potential. The study reports also the evolution with the installed power of the capacity factor, a parameter closely related to the cost of the generated energy, as well as the occupied land, which bears environmental and social acceptance implications. A parametric study is performed to assess the uncertainties in the study associated to the choice of the characteristic wind‐turbine farm used; and comparisons are provided with other similar studies. The study indicates that the overall technical potential is approximately 1100 TWh/y; and that about 70 GW of installed wind power could operate with capacity factors in excess of 24%, resulting in an annual electricity generation of approximately 190 TWh/y, or 60% of the electricity consumption in 2008. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
世界风力发电现状与前景预测   总被引:3,自引:0,他引:3  
罗承先 《中外能源》2012,17(3):24-31
全球可再生能源发电装机容量中风电占有压倒性优势,今后可望成为欧洲、亚洲、北美的主要电力来源.2011年中国以62GW的累计装机容量蝉联世界第一,按照我国“十二五”规划目标,预计到2015年风电装机容量将达到1×108kW,年发电量1900×108kW·h.GWEC和Greenpeace预测,今后20年风力发电将成为世界主力电源,2030年装机容量有可能达到23×108kW,可供应世界电力需求的22%.欧美正大力开发海上风电产业.欧洲是世界海上风电发展的先驱和产业中心,欧洲企业不仅拥有自己的核心技术,而且还向世界各地输出技术,今后欧洲海上风力发电将急速增长.美国采取与英国、德国等欧洲厂家相同的战略,大力发展海上风力发电.我国海上风电产业刚刚起步,预计2015年海上风电装机500×104kW.日本学者大岛教授推算了不同电源的发电成本:包括政府财政补贴,运行年限30年的核电站发电成本为12.06日元/(kW·h);按标准设备利用率,风力发电成本11.30日元/(kW·h),与核电相比已经有竞争力.假设风况好时设备利用率达到35%,发电成本为7.95日元/(kW·h),比核电低得多.  相似文献   

9.
According to the EU Directive 2001/77/EC 7% of all electricity production is to be generated from renewable energy sources (RES) in Lithuania in 2010. Electricity production from RES is determined by hydro, biomass and wind energy resources in Lithuania. Further development of hydro power plants is limited by environmental restrictions, therefore priority is given to wind energy development. The aim of this paper is to show estimation of the maximum wind power penetration in the Lithuanian electricity system using such criteria as wind potential, possibilities of the existing electricity network, possible environmental impact, and social and economical aspects. Generalization of data from the meteorological stations and special measurements shows that the highest average wind speed in Lithuanian territory is in the coastal region and at 50 m above ground level reaches 6.4 m/s. In regard to wind resource distribution in this region, arrangement of electricity grid and environment protection requirements, six zones have been determined for wind power plant construction. Calculations have shown that the largest total installed capacity of wind farms, which could cause no significant increase in power transmission expenses, is 170 MW. The threshold, which cannot be passed without capital reconstruction of electricity network, is 500 MW of total capacity of wind farms.  相似文献   

10.
China's total installed electrical power capacity reached 700 GW by the end of 2007 and is predicted to surpass 900 GW in 2010. The rapid increase in energy demand and increasing global warming have both pushed China to change its current electrical power structure where coal power accounts for nearly 75% of the total electric power generation. China has already become the world's largest solar water heater producer and user. However, there is still much to be done in the solar thermal power field before its commercialization. Solar thermal power technologies including solar power towers, solar parabolic trough concentrators, solar dish/stirling systems, linear Fresnel reflectors, and solar chimneys have been studied in China since the 1980s. A 10 kW dish/stirling project was funded by the Ministry of Science and Technology (MOST) during 2000–2005 with a 1 MW solar power tower and research of trough concentrator metal–glass evacuated tubes supported during 2006–2010. This paper describes a continued solar thermal power development roadmap in China in 5-year intervals between 2006 and 2025.  相似文献   

11.
Based on independent studies, this paper focuses on the significant discrepancy of 15 GW between the installed onshore wind generation capacity and what has been actually connected to the power network to reveal the challenges in meeting the Chinese renewable energy target. The recent accidents in Chinese North-Western transmission network (in February–April, 2011) demonstrated the urgent need for a fundamental review of the Chinese renewable energy policy. Offshore wind has been identified as the most feasible alternative to onshore wind to help deliver electricity to Eastern China during the summer peak time. By investigating and summarizing first hand experiences of participation in the Chinese renewable market, the authors provide the economic figures of the first cohort of Chinese offshore wind schemes. Large state owned enterprises (SOE) are dominating the offshore wind development, repeating their previous practices on the land. While this paper acknowledges the critical role of offshore wind generation in meeting Chinese renewable energy targets, it envisages an installed offshore capacity of approximately 2000 MW by 2015, much less than the 10000 MW governmental estimation, which can be attributed to the lack of detailed energy policy, network constraints, offshore wind installation difficulties and quality issues in the manufacture of turbines.  相似文献   

12.
The People's Republic of China foresees a target of 30 GW for installed wind power capacity by 2010 (2008: 12 GW). This paper reports on the technical and economic potentials of wind power, the recent development, existing obstacles, and related policies in China. The barriers to further commercialization of the wind power market are important and may deter the 100 GW capacity target of the Chinese government by 2020. The paper concludes that the diffusion of wind power in China is an important element for not only reducing global greenhouse gas emissions, but also for worldwide progress of wind power technology and needed economies of scale.  相似文献   

13.
The curbing of greenhouse gases (GHG) is an important issue on the international political agenda. The substitution of fossil fuels by renewable energy sources is an often-advocated mitigation strategy. Wind energy is a potential renewable energy source. However, wind energy is not reliable since its electricity production depends on variable weather conditions. High wind energy penetration rates lead to losses due to power plant operation adjustments to wind energy. This research identifies the potential energetic benefits of integrated hydrogen production in electricity systems with high wind energy penetration. This research concludes that the use of system losses for hydrogen production via electrolysis is beneficial in situations with ca. 8 GW or more wind energy capacity in the Netherlands. The 2020 Dutch policy goal of 6 GW will not benefit from hydrogen production in terms of systems efficiency. An ancillary beneficial effect of coupling hydrogen production with wind energy is to relieve the high-voltage grid.  相似文献   

14.
In this paper all provinces of South Africa with a good potential for the implementation of large-scale concentrating solar power plants are identified using geographic information systems. The areas are assumed suitable if they get sufficient sunshine, are close enough to transmission lines, are flat enough, their respective vegetation is not under threat and they have a suitable land use profile. Various maps are created showing the solar resource, the slope, areas with “least threatened” vegetation, proximity to transmission lines and areas suitable for the installation of large concentrating solar power plants. Assuming the installation of parabolic trough plants, it is found that the identified suitable areas could accommodate plants with a nominal capacity of 510.3 GW in the Northern Cape, 25.3 GW in the Free State, 10.5 GW in the Western Cape and 1.6 GW in the Eastern Cape, which gives a total potential nominal capacity of 547.6 GW for the whole country.  相似文献   

15.
The cost of the electricity generated from onshore wind is assessed through a method based on an estimation of the geographical distribution of the technical potential and a cost structure for the estimation of the local unit cost. Generation-cost curves are then employed to portray the evolution of the specific generating cost with the increase of the generated energy, until the limit of the technical potential is reached. The study also relates the energy cost to the land occupancy, the installed power and the capacity factor, and includes an assessment of the interplay between land usage and the cost of wind electricity. An analysis is presented to determine the uncertainty in the costs of the several model parameters. The method is applied to Spain, and allows to establish that, for an electricity-generation level of 300 TW h/y (roughly equal to the overall demand in Spain in 2008), the specific marginal cost is around 8.5 c€/kW h.  相似文献   

16.
Economic impact of solar thermal electricity deployment in Spain   总被引:1,自引:0,他引:1  
The objective of the work is to estimate the socio-economic impacts of increasing the installed solar thermal energy power capacity in Spain. Using an input–output (I–O) analysis, this paper estimates the increase in the demand for goods and services as well as in employment derived from solar thermal plants in Spain under two different scenarios: (a) based on two solar thermal power plants currently in operation (with 50 and 17 MW of installed capacity); (b) the compliance to the Spanish Renewable Energy Plan (PER) 2005–2010 reaching 500 MW by 2010.  相似文献   

17.
For an isolated power system the deployment of a large stock of electrolysers is investigated as a means for increasing the penetrations of wind power plant and zero-carbon thermal power plant. Consideration is given to the sizing and utilization of an electrolyser stock for three electrolyser implementation cases and three operational strategies, installed capacity ranges of 20–100% for wind power and 10–35% for zero-carbon thermal power plant (as proportions of the power system’s maximum electrical demand) were investigated. Relative to wind-hydrogen alone, hydrogen yields are substantially increased especially on low-wind days. The average load placed on fossil-fuelled power plant is substantially decreased (while achieving a virtually flat load profile) and the carbon intensity of electricity can be reduced to values of <0.1 kg CO2/kWhe. The trade-offs between the carbon intensity of the electricity delivered, the carbon intensity of the hydrogen produced and the daily hydrogen yield are explored. For example (on the variable wind day for Strategy C with respective wind power and zero-carbon thermal power penetrations of 100% and 35%), if the carbon intensity of hydrogen is relaxed from 0 to 3 kg CO2/kg H2, the hydrogen yield can be increased from 435 tonnes to 1115 tonnes (which is the energy equivalent of 120% of consumer demand for electricity on that day). The findings suggest that the deployment of electrolysers on both the supply and demand-side of the power system can contribute nationally-significant amounts of zero or low-carbon hydrogen without exceeding the power system’s current maximum system demand.  相似文献   

18.
This paper deals with MARKAL allocations for various energy sources, in India, for Business As Usual (BAU) scenario and for the case of exploitation of energy saving potential in various sectors of economy. In the BAU scenario, the electrical energy requirement will raise up to 5000 bKwh units per year or 752 GW of installed capacity with major consumers being in the industry, domestic and service sectors. This demand can be met by a mix of coal, hydro, nuclear and wind technologies. Other reneawbles i.e. solar and biomass will start contributing from the year 2040 onwards. By full exploitation of energy saving potential, the annual electrical energy demand gets reduced to 3061 bKwh (or 458 GW), a reduction of 38.9%.The green house gas emissions reduce correspondingly. In this scenario, market allocations for coal, gas and large hydro become stagnant after the year 2015.  相似文献   

19.
Compressed air energy storage (CAES) could be paired with a wind farm to provide firm, dispatchable baseload power, or serve as a peaking plant and capture upswings in electricity prices. We present a firm-level engineering-economic analysis of a wind/CAES system with a wind farm in central Texas, load in either Dallas or Houston, and a CAES plant whose location is profit-optimized. With 2008 hourly prices and load in Houston, the economically optimal CAES expander capacity is unrealistically large – 24 GW – and dispatches for only a few hours per week when prices are highest; a price cap and capacity payment likewise results in a large (17 GW) profit-maximizing CAES expander. Under all other scenarios considered the CAES plant is unprofitable. Using 2008 data, a baseload wind/CAES system is less profitable than a natural gas combined cycle (NGCC) plant at carbon prices less than $56/tCO2 ($15/MMBTU gas) to $230/tCO2 ($5/MMBTU gas). Entering regulation markets raises profit only slightly. Social benefits of CAES paired with wind include avoided construction of new generation capacity, improved air quality during peak times, and increased economic surplus, but may not outweigh the private cost of the CAES system nor justify a subsidy.  相似文献   

20.
China and India are embarking on ambitious initiatives over the next decade to expand solar photovoltaic (PV) power in underserved regions. China proposes adding 1.6 GW of solar capacity by 2020, while India plans 12 GW in addition to 20 million solar lanterns by 2022. These technologies rely heavily on lead-acid batteries (LABs) for storage. China and India’s lead mining, battery production, and recycling industries are relatively inefficient—33% and 22% environmental loss rates, respectively. Based on the quantity of lead batteries employed in existing PV systems, we estimate environmental lead emissions in China and India for new units installed under their solar energy goals. The average loss rates are 12 kg (China) and 8.5 kg (India) of lead lost per kW-year of installed PV capacity in these countries. The planned systems added in China and India will be responsible for 386 and 2030 kt of environmental lead loss, respectively, over their lifespan—equal to 1/3 of global lead production in 2009. Investments in environmental controls in lead smelting, battery manufacturing, and recycling industries along with improvements in battery take-back policies should complement deployment of solar PV systems to mitigate negative impacts of lead pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号