首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Under the Paris Agreement, targets implemented for 2100 specify temperature increases well below 2 °C, with an ambitious target of 1.5 °C. China signed this agreement and will support these global targets. The question remains whether they are possible, especially considering the slow progress in recent decades, despite the fact that the Kyoto Protocol implemented these targets in 2010. The Intergovernmental Panel on Climate Change (IPCC) required modeling research teams to analyze possible pathways, policy options, and cost benefit analyses for GHG mitigation. China’s CO2 emissions from the energy and cement industries already accounted for almost 29% of global emissions in 2017, and this trend is expected to continue increasing. The role of China in global GHG mitigation is therefore crucial. This study presents a scenario analysis for China’s power generation against the background of the global 2 °C and 1.5 °C targets. We discuss the possibility of a lower CO2 emission power generation scenario in China in order to evaluate the national emission pathway towards these targets. Our findings suggest that China can accomplish rapid transition in the power generation sector, reaching its emission peak before 2025. This would make the global 2 °C target possible because energy system development is a key factor. Furthermore, the recent progress of key power generation technologies, potential for further investment in the power generation sector, and recent policy implementation all significantly contribute to China following a low carbon emission development pathway.  相似文献   

3.
The status and prospects of renewable energy for combating global warming   总被引:1,自引:0,他引:1  
Reducing anthropogenic greenhouse gas (GHG) emissions in material quantities, globally, is a critical element in limiting the impacts of global warming. GHG emissions associated with energy extraction and use are a major component of any strategy addressing climate change mitigation. Non-emitting options for electrical power and liquid transportation fuels are increasingly considered key components of an energy system with lower overall environmental impacts. Renewable energy technologies (RETs) as well as biofuels technologies have been accelerating rapidly during the past decades, both in technology performance and cost-competitiveness — and they are increasingly gaining market share. These technology options offer many positive attributes, but also have unique cost/benefit trade-offs, such as land-use competition for bioresources and variability for wind and solar electric generation technologies. This paper presents a brief summary of status, recent progress, some technological highlights for RETs and biofuels, and an analysis of critical issues that must be addressed for RETs to meet a greater share of the global energy requirements and lower GHG emissions.  相似文献   

4.
Alternative energy technologies (AETs) have emerged as a solution to the challenge of simultaneously meeting rising electricity demand while reducing carbon emissions. However, as all AETs are responsible for some greenhouse gas (GHG) emissions during their construction, carbon emission “Ponzi Schemes” are currently possible, wherein an AET industry expands so quickly that the GHG emissions prevented by a given technology are negated to fabricate the next wave of AET deployment. In an era where there are physical constraints to the GHG emissions the climate can sustain in the short term this may be unacceptable. To provide quantitative solutions to this problem, this paper introduces the concept of dynamic carbon life-cycle analyses, which generate carbon-neutral growth rates. These conceptual tools become increasingly important as the world transitions to a low-carbon economy by reducing fossil fuel combustion. In choosing this method of evaluation it was possible to focus uniquely on reducing carbon emissions to the recommended levels by outlining the most carbon-effective approach to climate change mitigation. The results of using dynamic life-cycle analysis provide policy makers with standardized information that will drive the optimization of electricity generation for effective climate change mitigation.  相似文献   

5.
The long-term assessment of new electricity generation was performed for various long-run policy scenarios taking into account two main criteria: private costs and external GHG emission costs. Such policy oriented power generation technologies assessment based on carbon price and private costs of technologies can provide information on the most attractive future electricity generation technologies taking into account climate change mitigation targets and GHG emission reduction commitments for world regions.Analysis of life cycle GHG emissions and private costs of the main future electricity generation technologies performed in this paper indicated that biomass technologies except large scale straw combustion technologies followed by nuclear have the lowest life cycle GHG emission. Biomass IGCC with CO2 capture has even negative life cycle GHG emissions. The cheapest future electricity generation technologies in terms of private costs in long-term perspective are: nuclear and hard coal technologies followed by large scale biomass combustion and biomass CHPs. The most expensive technologies in terms of private costs are: oil and natural gas technologies. As the electricity generation technologies having the lowest life cycle GHG emissions are not the cheapest one in terms of private costs the ranking of technologies in terms of competitiveness highly depend on the carbon price implied by various policy scenarios integrating specific GHG emission reduction commitments taken by countries and climate change mitigation targets.  相似文献   

6.
Among technological options to mitigate greenhouse gas (GHG) emissions, biomass energy with carbon capture and storage technology (BECCS) is gaining increasing attention. This alternative offers a unique opportunity for a net removal of atmospheric CO2 while fulfilling energy needs. Empirical studies using bottom-up energy models show that BECCS has an important role to play in the future energy mix. Most of these studies focus on global BECCS potential, whereas it is of interest to understand where this mitigation option will be deployed. This key issue will strongly depend on regions’ biomass resources and possession of storage sites. The aim of this study is to assess the global and regional potential of BECCS up to 2050 in power generation. This analysis is conducted using the multiregional TIAM-FR optimization model. The climate policy scenarios investigated lead to a considerable expansion of renewable energy and CCS and BECCS technologies in the power sector. CCS from fossil fuel is mainly deployed in fast developing countries (India and China) and BECCS is highly distributed in developing countries, even though biomass resources are widely available in all regions.  相似文献   

7.
Energy-related CO2 emission projections of China up to 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the multi-criteria approach is used for assessment of priority technologies.

The results of this study show (1) Given population expansion and high GDP growth, energy-related CO2 emissions will increase in China. (2) There exists a large energy conservation potential in China. (3) Adjustment of industry structure and increase of shares of products with high added value have and will play a very important role in reducing energy intensity of GDP. (4) Energy conservation and substitution of coal by natural gas, nuclear power, hydropower and renewable energy will be the key technological measures in a long-term strategy to reduce GHG emission. (5) Identification and implementation of GHG mitigation technologies is consistent with China's targets of sustainable development and environmental protection. (6) Energy efficiency improvement is a “no-regret” option for CO2 reduction, whereas an incremental cost is needed to develop hydropower and renewable energy.  相似文献   


8.
The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with attendant shortages and problems. Due to the predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. The power sector alone has a 40 percent contribution to the total carbon emissions. In this context, it is imperative to develop and promote alternative energy sources that can lead to sustainability of the energy–environment system. There are opportunities for renewable energy technologies under the new climate change regime as they meet the two basic conditions to be eligible for assistance under UNFCCC mechanisms: they contribute to global sustainability through GHG mitigation; and, they conform to national priorities by leading to the development of local capacities and infrastructure. This increases the importance of electricity generation from renewables. Considerable experience and capabilities exist in the country on renewable electricity technologies. But a number of techno–economic, market-related, and institutional barriers impede technology development and penetration. Although at present the contribution of renewable electricity is small, the capabilities promise the flexibility for responding to emerging economic, socio–environmental and sustainable development needs. This paper discusses the renewable and carbon market linkages and assesses mitigation potential of power sector renewable energy technologies under global environmental intervention scenarios for GHG emissions reduction. An overall energy system framework is used for assessing the future role of renewable energy in the power sector under baseline and different mitigation scenarios over a time frame of 35 years, between 2000 to 2035. The methodology uses an integrated bottom-up modelling framework. Looking into past performance trends and likely future developments, analysis results are compared with officially set targets for renewable energy. The paper also assesses the CDM investment potential for power sector renewables. It outlines specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.  相似文献   

9.
Integration of biomass energy technologies with carbon capture and sequestration could yield useful energy products and negative net atmospheric carbon emissions. We survey the methods of integrating biomass technologies with carbon dioxide capture, and model an IGCC electric power system in detail. Our engineering process model, based on analysis and operational results of the Battelle/Future Energy Resources Corporation gasifier technology, integrates gasification, syngas conditioning, and carbon capture with a combined cycle gas turbine to generate electricity with negative net carbon emissions. Our baseline system has a net generation of 123 MWe, 28% thermal efficiency, 44% carbon capture efficiency, and specific capital cost of 1,730 $ kWe−1. Economic analysis suggests this technology could be roughly cost competitive with more conventional methods of achieving deep reductions in CO2 emissions from electric power. The potential to generate negative emissions could provide cost-effective emissions offsets for sources where direct mitigation is expected to be difficult, and will be increasingly important as mitigation targets become more stringent.  相似文献   

10.
The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO2,e)/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO2,e/MJ with the development of nuclear and renewable energy and to 169.014 gCO2,e/MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity.  相似文献   

11.
Since the rapid industrialisation, local air pollution has become one of China's most important environmental issues. In consequence, increasingly stringent air pollution control policies have been established by the Chinese government. These policies will inevitably affect China's future electric power investment given the key contribution of this sector to air pollution. This sector is also a key contributor to China’s greenhouse gas emissions and hence climate policy efforts. We present a study exploring what impacts of potential interactions and combinations of different policy efforts for local air pollutant control and carbon mitigation have on China's future electricity generation mix. The study utilises a novel generation portfolio model that explicitly incorporates key uncertainties in future technology costs and different policy approaches including carbon pricing and air emissions control. The findings highlight that China can achieve significant reductions for both greenhouse gas and local air pollutant emissions through a combination of climate change and air pollution control policies. Furthermore, there are potentially significant co-benefits from the perspectives of both air pollutant control and carbon mitigation and, notably, that the co-benefit from a sufficient carbon pricing policy to air pollution emission reductions is much stronger than that from stringent air pollutant control policies to carbon mitigation. Specifically, in order to achieve substantial local air pollution and greenhouse gas mitigation from China's electricity sector, it is necessary to close coal-fired power plants rather than merely seeking to clean their air pollution emissions up.  相似文献   

12.
中国能源领域排放的二氧化碳主要来自煤炭,因此煤炭消费过程中的碳减排措施尤为重要。煤炭的主要用户是发电部门,基于应对气候变化的需要,煤电行业的低碳途径不得不考虑采用CCS技术。不论是新建燃煤电厂,还是今后在传统电厂改建过程中增设CCS设施已是大势所趋,预计多数仍将采用MEA法脱除烟气中二氧化碳这一成熟技术。由于MEA法技术经济指标不够先进,估计10~20年内必将出现更先进的脱二氧化碳工艺技术。传统的燃煤锅炉增加CCS的经济效益已经逊于IGCC-CCS,预计2020年后IGCC电厂将成为新建煤电厂的首选方案。20年后采用临氢气化炉与燃料电池FC发电相结合、把高温的热能和甲烷的化学能直接转化为电力的IGFC高效燃煤电厂或将成功应用,IGFC综合能量转化效率比IGCC相对高出1/2~3/4,发展前景不可低估。钢铁、水泥和化工等高耗煤工业部门可通过节能和采用CCS技术降低碳排放,其余用煤的工业部门和分散用户则应考虑节能或用天然气等低碳燃料替代,间接起到减排效果。预计2050年燃煤发电和高耗煤工业总计将排放二氧化碳4.6Gt,如果二氧化碳捕集量是2.9Gt,则净排放量为1.7Gt。加上其他难以捕集二氧化碳的工业、部门及民用煤排放二氧化碳1.0Gt,合计二氧化碳净排放量为2.7Gt(情景A)。如果采用更先进的技术和严格的节能减排措施,可减少煤炭消耗0.31Gt标煤,减少二氧化碳排放0.5Gt,使煤源二氧化碳净排放量减少到2.2Gt(情景B)。无论哪种情景,实施CCS的任务都十分艰巨。  相似文献   

13.
The establishment of an emissions trading scheme (ETS) in China creates the potential for a “least cost” solution for achieving the greenhouse gas (GHG) emissions reductions required for China to meet its Paris Agreement pledges. China has pledged to reduce CO2 intensity by 60–65% in 2030 relative to 2005 and to stop the increase in absolute CO2 emissions around 2030. In this series of studies, we enhance the MIT Economic Projection and Policy Analysis (EPPA) model to include the latest assessments of the costs of power generation technologies in China to evaluate the impacts of different potential ETS pathways on deployment of carbon capture and storage (CCS) technology. This paper reports the results from baseline scenarios where power generation prices are assumed to be homogeneous across the country for a given mode of generation. We find that there are different pathways where CCS might play an important role in reducing the emission intensity in China's electricity sector, especially for low carbon intensity targets consistent with the ultimate goals of the Paris Agreement. Uncertainty about the exact technology mix suggests that decision makers should be wary of picking winning technologies, and should instead seek to provide incentives for emission reductions. While it will be challenging to meet the CO2 intensity target of 550 g/kWh for the electric power sector by 2020, multiple pathways exist for achieving lower targets over a longer timeframe. Our initial analysis shows that carbon prices of 35–40$/tCO2 make CCS technologies on coal-based generation cost-competitive against other modes of generation and that carbon prices higher than 100$/tCO2 favor a major expansion of CCS. The next step is to confirm these initial results with more detailed modeling that takes into account granularity across China's energy sector at the provincial level.  相似文献   

14.
CO2 emissions of the electricity supply sector in China account for about half of the total volume in the country. Thus, reducing CO2 emissions in China’s electricity supply sector will contribute significantly to the efforts of greenhouse gas (GHG) control in the country and the rest of the world. This paper introduces the development status of renewable energy and other main CO2 mitigation options in power generation in China and makes a preliminary prediction of the development of renewable energy in the country for future decades. Besides, based on the situation in China, the paper undertakes a comprehensive analysis of CO2 mitigation costs, mitigation potential, and fossil energy conversation capacity of renewable energy and other mitigation options, through which the influence of renewable energy on the mitigation strategy of China is analyzed.  相似文献   

15.
我国清洁能源碳减排效益分析及发展顺序   总被引:1,自引:0,他引:1  
刘兰菊 《水电能源科学》2012,30(8):211-213,115
发展低碳能源是应对全球气候变化、实现电力低碳化发展的有效途径,最终要以发电技术在具体工程项目中应用来实现,衡量各技术的经济可行性、评价可再生能源发电技术CO2的减排效益是关键。分析了当前我国主要5种低碳发电技术置换火电的碳减排成本及产生的碳减排效益,并对2020年低碳能源发电技术的碳减排潜力进行了测算。结果表明,水电发电成本及相应的碳减排成本最低,核电其次,光伏发电最高,应优先发展水电、大力开发核电,同时积极发展风电等其他低碳能源。  相似文献   

16.
Secure, reliable and affordable energy supplies are necessary for sustainable economic growth, but increases in associated carbon dioxide (CO2) emissions, and the associated risk of climate change are a cause of major concern. Experts have projected that the CO2 emissions related to the energy sector will increase 130% by 2050 in the absence of new policies or supply constraints as a result of increased fossil fuel usage. To address this issue will require an energy technology revolution involving greater energy efficiency, increased renewable energies and nuclear power, and the near-decarbonisation of fossil fuel-based power generation. Nonetheless, fossil fuel usage is expected to continue to dominate global energy supply. The only technology available to mitigate greenhouse gas (GHG) emissions from large-scale fossil fuel usage is carbon capture and storage (CCS), an essential part of the portfolio of technologies that is needed to achieve deep global emission reductions. However, CCS technology faces numerous issues and challenges before it can be successfully deployed. With Malaysia has recently pledged a 40% carbon reduction by 2020 in the Copenhagen 2009 Climate Summit, CCS technology is seen as a viable option in order to achieve its target. Thus, this paper studies the potential and feasibility of coal-fired power plant with CCS technology in Malaysia which includes the choices of coal plants and types of capture technologies possible for implementation.  相似文献   

17.
Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets.  相似文献   

18.
Forklift propulsion systems and distributed power generation are identified as potential fuel cell applications for near-term markets. This analysis examines fuel cell forklifts and distributed power generators, and addresses the potential energy and environmental implications of substituting fuel-cell systems for existing technologies based on fossil fuels and grid electricity. Performance data and the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources. The greenhouse gas (GHG) impacts of fuel-cell forklifts using hydrogen from steam reforming of natural gas are considerably lower than those using electricity from the average U.S. grid. Fuel cell generators produce lower GHG emissions than those associated with the U.S. grid electricity and alternative distributed combustion technologies. If fuel-cell generation technologies approach or exceed the target efficiency of 40%, they offer significant reduction in energy use and GHG emissions compared to alternative combustion technologies.  相似文献   

19.
To assess the effectiveness of urban energy conservation and GHG mitigation measures, a detailed Long-range Energy Alternatives Planning (LEAP) model is developed and applied to analyze the future trends of energy demand and GHG emissions in Xiamen city. Two scenarios have been designed to describe the future energy strategies in relation to the development of Xiamen city. The ‘Business as Usual’ scenario assumes that the government will do nothing to influence the long-term trends of urban energy demand. An ‘Integrated’ scenario, on the other hand, is generated to assess the cumulative impact of a series of available reduction measures: clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control, and new and renewable energy development and utilization. The reduction potentials in energy consumption and GHG emissions are estimated for a time span of 2007–2020 under these different scenarios. The calculation results in Xiamen show that the clean energy substitution measure is the most effective in terms of energy saving and GHG emissions mitigation, while the industrial sector has the largest abatement potential.  相似文献   

20.
An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and polices. In major part reducing CO2 as well as the other greenhouse gas emissions in Kazakstan can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment.

The mitigation analysis addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan's CO2 emissions will not exceed their 1990 level until 2005. The potential for CO2 emission reduction is estimated to be about 11% of the baseline emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy, and further expansion in the use of hydro energy based on small hydroelectric power plants.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号