共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of scenarios for the reduction of energy consumption and GHG emissions in transport in the Basque Country 总被引:1,自引:0,他引:1
Gorka Bueno 《Renewable & Sustainable Energy Reviews》2012,16(4):1988-1998
Fossil energy depletion and fight against climate change force humanity to decarbonize the economy. By year 2050 CO2 emissions will have to reduce globally at least 85%, and probably over 95% in developed countries.The modeling of the transportation of people and commodities in the Basque Autonomous Community (Spain) in year 2008 has allowed us to draw some conclusions about the challenges ahead. The exploration of several scenarios modeled in order to reduce energy consumption in transport shows that mobility in a decarbonized world will have to be more efficient, electrified when moving people and freight on land, based on renewable generation, and organized in such a way that guarantees very high occupancies of vehicles. All these elements will be indispensable, and even not sufficient if they are still not complemented with a reduction of mobility in absolute terms, so that economic transportation intensity—the ratio between transportation and whole economic activity—recovers to levels seen in the world four decades ago, prior to the development of present hypermobility. 相似文献
2.
This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts.There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities.Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power. 相似文献
3.
The rapid growth of vehicles has resulted in continuing growth in China’s oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China’s road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology. 相似文献
4.
《International Journal of Hydrogen Energy》2020,45(15):8002-8014
Energy security and climate change are critical concerns in the present era. The booming of the vehicle population has worsened the environment and has caused severe air pollution problems, especially in urban areas. The utilization of hydrogen-enriched compressed natural gas in internal combustion engines shows abundant prospects for improved performance and reduced on-road emissions of greenhouse gases and air pollutants. This study aims to provide an insight to well-to-wheels environmental implications of the 20%HCNG fuel mixture in terms of total energy use, and greenhouse gas emissions per megajoules (MJ) of thermal energy output. The well-to-tank (WTT) impacts were evaluated using GREET 1 (2017). GREET 1 is a fuel cycle modeling tool developed by ‘Argonne national laboratory.’ GREET® is extensively used by researchers worldwide to analytically simulate energy use and emission output of various vehicle and fuel combinations. This study uses 12 prospective pathways of gaseous hydrogen production for analysis purposes. In the tank-to-wheels (TTW) phase, the 20%HCNG@EEV reduces the brake specific energy consumption (BSEC) by approximately 5%, and also decreases GHG emissions by 14% compared with 0%HCNG@EURO3. For simplicity, EURO5 is entitled as ‘EEV’ and has been excluded in most of the discussion, only highlighting ‘EEV,’ which abbreviates as ‘Enhanced Environmentally friendly Vehicles.’ For the entire well-to-wheels phase, this research work shows that all of the 20%HCNG@EEV pathways have lower total energy use and GHG emissions than 0%HCNG@EURO3 except the two pathways, such as grid electricity-to-hydrogen (without CO2 sequestration) and coal gasification-to-hydrogen (without CO2 sequestration). The WTW total energy and GHG emissions reduced by approximately 14% and 13%, respectively, with 20%HCNG@EEV based on the coke oven gas pathway compared with 0%HCNG@EURO3. It is essential to note that the use of cleaner feedstock for hydrogen, such as power-to-gas (P2G), biomass, coke oven gas (by-product), and natural gas shows tremendous prospects for realizing and practicing sustainable ‘hydrogen economy’ in China. Further technological advancement and reduction in total costs of HCNG utilization in powertrains will increase the number of HCNG vehicles decreasing the burden of air pollution, climate change, and energy crisis threats. 相似文献
5.
In this paper, an empirical model is developed for electricity consumption of the Jordanian industrial sector based on multivariate linear regression to identify the main drivers behind electricity consumption. In addition, projection of electricity consumption for the industrial sector based on time series forecasting is presented. It was found that industrial production outputs and capacity utilization are the two most important variables that affect demand on electrical power and the multivariate linear regression model can be used adequately to simulate industrial electricity consumption with very high coefficient of determination. To illustrate the importance of integrating energy efficiency within national energy plans, the impact of implementing high-efficiency motors was investigated and found to be significant. Without such basic energy conservation and management programs, electricity consumption and associated GHG emissions for the industrial sector are predicted to rise by 63% in the year 2019. However, if these measures are implemented on a gradual basis, over the same period, electricity consumption and GHG emissions are forecasted to ascend at a lower rate with low/no cost actions. 相似文献
6.
《Energy Policy》2013
The current increasing importance of road transport in the overall greenhouse gas (GHG) emissions has led to the adoption of diverse policies for the mitigation of global warming. These policies focus in two directions, depending on whether they involve the reduction of emissions or the mitigation through carbon dioxide (CO2) sequestration. In this paper, the Tier 3 methodology from the European Monitoring and Evaluation Programme and the Environment Agency (EMEP/EEA) was applied to determine the evolution of Spanish motorway GHG emissions in the period 2005–2010. According to the results, though the average daily traffic (ADT) is the major parameter, the average fleet age and vehicle size also affect the level of emissions. Data analysis also revealed a clear connection between the decrease in European trade volume during the financial crisis and the GHG release, despite its temporary character. Among the three improvement scenarios evaluated, reduced speed limit seems the most direct measure while the consequences of afforestation strongly depend on the traffic density of the stretch of the motorway considered. Finally, technological improvement requires a drastic change in the fleet to obtain substantial decrease. The combination of different policies would allow a more robust strategy with lower GHG emissions. 相似文献
7.
Shuzo Murakami Mark D. Levine Hiroshi Yoshino Takashi Inoue Toshiharu Ikaga Yoshiyuki Shimoda Shuichi Miura Tomoki Sera Masahiro Nishio Yasuhiro Sakamoto Wataru Fujisaki 《Energy Efficiency》2009,2(2):179-194
This paper outlines the energy consumption and greenhouse gas emission trends in the residential and commercial sectors in
Japan. The results showed that the increase in residential energy consumption in Japan is mainly caused by the widespread
use of heating equipment, hot water supply apparatus, and other household electrical appliances. On the other hand, it was
indicated that the increase in commercial energy use is mainly due to the increase of the floor area of buildings, particularly
hotels, hospitals, and department stores. The paper also describes political measures to promote energy conservation, including
the building energy conservation standard, Comprehensive Assessment System for Building Environmental Efficiency, top runner
programs, financial incentives, and the dissemination of the Cool Biz concept. Finally, the projections of CO2 emissions until 2050 are presented.
相似文献
Hiroshi YoshinoEmail: |
8.
In recent years, GHG inventories of cities have expanded to include extra-boundary activities that form part of the city's urban metabolism and economy. This paper centers on estimating the emissions due to seaports, in such a way that they can be included as part of the city's inventory or be used by the port itself to monitor their policy and technology improvements for mitigating climate change. We propose the indicators GHG emissions per ton of cargo handled or per passenger and emissions per value of cargo handled as practical measures for policy making and emission prevention measures to be monitored over time. Adapting existing methodologies to the Port of Barcelona, we calculated a total of 331,390 tons of GHG emissions (CO2 equivalents) for the year of 2008, half of which were attributed to vessel movement (sea-based emissions) and the other half to port, land related activities (land-based emissions). The highest polluters were auto carriers with 6 kg of GHG emissions per ton of cargo handled. Knowing the highest emitters, the port can take action to improve the ship's activities within the port limits, such as maneuvering and hotelling. With these results, the port and the city can also find ways to reduce the land-based emissions. 相似文献
9.
This paper aims to analyze factors influencing energy consumption pattern and emission levels in the transport sector of Delhi, and extrapolates total energy demand and the vehicular emissions, using a computer-based software called ‘Long Range Energy Alternative Planning’ (LEAP) and the associated ‘Environmental Database (EDB)’. The study is restricted to passenger modes of transport in Delhi and does not include the freight model. Travel demand is first estimated by analyzing data on vehicle population, average distance travelled, and occupancy level. Next, data on travel demand, proportion of travel demand catered by road and rail, modal split, occupancy and fuel efficiency are compiled within the LEAP framework, in order to estimate the energy demand in Delhi. In addition, emission factors are compiled under EDB module of the LEAP structure to estimate the resultant pollution loading. The LEAP model is run under five alternative scenarios to estimate the current consumption of gasoline and diesel oil in Delhi and forecast the same for the years 1994/1995, 2000/2001, 2004/2005 and 2009/2010, respectively. Under each scenario, the model also estimates emissions of CO, HC, NOx, SO2, Pb and TSP. The total emissions are translated into concentration levels attributable to the passenger transport to get an indication of air quality in Delhi. This is accomplished by the use of proportional air quality model. Finally, scenario results are analyzed to study the impact of different urban transport policy initiatives that will reduce the growth of fuel demand and emissions. The prime objective is to arrive at an optimal transport policy that limits the future growth of fuel consumption as well as air pollution. 相似文献
10.
How to sustain rapid economic and urban growth with minimised detriment to environment is a key challenge for sustainable development and climate change mitigation in developing countries, which face constraints of technical and financial resources scarcity as well as dearth of infrastructure governance capacity. This paper attempts to address this question by investigating the driving forces of transport demand and relevant policy measures that facilitate mitigating GHG emissions in the urban transport sector in Indian cities based on a critical review of the literature. Our overview of existing literature and international experiences suggests that it is critical to improve urban governance in transport infrastructure quality and develop efficient public transport, coupled with integrated land use/transport planning as well as economic instruments. This will allow Indian cities to embark on a sustainable growth pathway by decoupling transport services demand of GHG emissions in the longer term. Appropriate policy instruments need to be selected to reconcile the imperatives of economic and urban growth, aspiration to higher quality of life, improvements in social welfare, urban transport-related energy consumption and GHG emissions mitigation target in Indian cities. 相似文献
11.
One of the Thai government's measures to promote ethanol use is excise tax exemption, making gasohol cheaper than gasoline. The policy in favour of biofuels is being supported by their contribution to fossil energy savings and greenhouse gas (GHG) mitigation. An analysis of energy balance (EnB), GHG balance and GHG abatement cost has been done to evaluate molasses-based ethanol (MoE) in Thailand. A positive EnB of 19.2 MJ/L implies that MoE is a good substitute for gasoline, effective in fossil energy savings. GHG balance assessment based on the baseline scenario shows that emissions are most likely to increase with the substitution. Scenarios using biogas captured from spent wash treatment and rice husk to substitute coal used in ethanol conversion give encouraging results in improving the GHG balance. However, the higher price of MoE over gasoline currently has resulted in high GHG abatement costs, even under the best-case scenario. Compared to the many other climate strategies relevant to Thailand, MoE is much less cost effective. Governed by the rule of supply and demand, a strong fluctuation in molasses price is considered the main cause of volatile MoE price. Once supplies are stable, the trend of price drops would make MoE a reasonable option for national climate policy. 相似文献
12.
In this paper, we evaluate energy efficiency in the European freight transport sector over three decades, according to a variety of indicators, methodologies and databases. The aim is, on the one hand, of determining major drawbacks in energy efficiency metrics, on the other hand, identifying a possible trend in the sector. The present analysis shows that energy efficiency evaluation is generally subject to misinterpretation and distortion with regard to the methods and data source adopted. Two different indicators (energy intensity and fuel economy) were initially taken into account to select the most suitable for evaluating vehicles’ efficiency. Fuel economy was then adopted and measured according to two different methodologies (top–down and bottom–up). We then considered all the possible sources of distortion (data sources employed, methods of data detection, speed of detection, power enhancement, size factor) with the aim of accomplishing a sound estimation. Fuel economy was eventually divided with the maximum power available (adjusted fuel economy), to account for the power shift of vehicles, that represents a further efficiency improvement. 相似文献
13.
Anthony O. Adegbulugbe 《Energy Policy》1991,19(10):940-945
This paper presents policy options for reducing CO2 emissions in Nigeria. The policies were formulated based on a thorough analysis of Nigeria's current energy consumption patterns and the projected evolution of key parameters that drive Nigeria's energy demand — primarily the rate of industrialization, the demand for transportation services, and the expansion of Nigeria's population. The study shows that the most promising options for reducing CO2 emissions in Nigeria are improving energy efficiency and increasing the use of natural gas and renewable energy sources. 相似文献
14.
Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taking China as an example, the unique advantages for China to deploy fuel cell vehicles are reviewed. Subsequently, this paper analyzes the greenhouse gas (GHG) emissions from 19 fuel cell vehicle utilization pathways by using the life cycle assessment approach. The results show that with the current grid mix in China, hydrogen from water electrolysis has the highest GHG emissions, at 3.10 kgCO2/km, while by-product hydrogen from the chlor-alkali industry has the lowest level, at 0.08 kgCO2/km. Regarding hydrogen storage and transportation, a combination of gas-hydrogen road transportation and single compression in the refueling station has the lowest GHG emissions. Regarding vehicle operation, GHG emissions from indirect methanol fuel cell are proved to be lower than those from direct hydrogen fuel cells. It is recommended that although fuel cell vehicles are promising for the developing world in reducing GHG emissions, the vehicle technology and hydrogen production issues should be well addressed to ensure the life-cycle low-carbon performance. 相似文献
15.
Developing underground coal gasification (UCG)-based hydrogen production (UCG-H2) is expected to alleviate hydrogen supply and demand contradiction, but its energy consumption and environmental impact need to be clarified. In this paper, comparative study of energy consumption and greenhouse gas (GHG) emissions between UCG-H2 and typical surface coal gasification (SCG)-based hydrogen production (SCG-H2) is carried out using life cycle assessment method. Result shows energy consumption of UCG-H2 is only 61.2% of that of SCG-H2, which is 1,327,261 and 2,170,263 MJ respectively, reflecting its obvious energy saving advantage. 80% capture rate can achieve an appropriate balance between energy consumption and emissions. Under this capture rate, emissions of UCG-H2 and SCG-H2 are roughly equivalent, which are 207,582 and 197,419 kg CO2-eq respectively. Scenario analysis indicates energy consumption in hydrogen industry can reduce by 38.8% when hydrogen production is substituted by UCG with CCS to fully meet demand of 21 Mt in 2030. 相似文献
16.
Through energy input–output (E-IO) analyses from 1985 to 2005, the changes in three factors affecting GHG emissions in South Korea were analyzed. Based on the E-IO results, the changes in the direct and total (embodied) GHG emissions from the pertinent sectors were decomposed into three factors—the energy consumption effect, the social effect, and the technological effect—using the Sato-Vartia index for the three periods of 1985–1995, 1995–2000, and 2000–2005. The decomposition analysis demonstrated that a total emission matrix including both direct and indirect GHG emissions showed an evolution pattern that was very similar to the changes in direct GHG emissions; however, ripple effects were observed in the case of emissions from sector #-59 (Synthetic resins, synthetic rubber-p). The results showed that national energy policies such as those pertaining to the diversification of energy sources, shifts in the energy consumption structure (social effect), and the transformation to a low-carbon energy economy (technology effect) were effective. Finally, several limitations of the Divisia decomposition analysis were pointed out. 相似文献
17.
A research associated with urban transportation was carried out in Rawalpindi and Islamabad to analyze the status of emission of air pollutants and energy demands. The study included a discussion of past trends and future scenarios in order to reduce the future emissions. A simple model of passenger transport has been developed using computer based software called Long-Range Energy Alternatives Planning System (LEAP). The LEAP model was used to estimate total energy demand and the vehicular emissions for the base year 2000 and extrapolated till 2030 for the future predictions. Transport database in Rawalpindi and Islamabad, together with fuel consumption values for the vehicle types and emission factors of NOx, SO2 and PM10 corresponding to the actual vehicle types, formed the basis of the transport demand, energy consumption and total emission calculations. Apart from base scenario, the model was run under three alternative scenarios to study the impact of different urban transport policy initiatives that would reduce energy demand and emissions in transport sector of Rawalpindi and Islamabad. The prime objective was to arrive at an optimal transport policy, which limits the future growth of fuel consumption as well as air pollution. 相似文献
18.
《Energy Policy》2015
There is a huge uncertainty in the GHG emissions reduction potential with transport electrification. The typical Life Cycle Assessment (LCA) practice of modeling a pathway by reducing what is known about a model parameter to a single value to produce a single-point GHG emissions estimate has led to reports in literature on the GHG emissions differences between Electric Vehicles (EV) and conventional Internal Combustion Engines (ICE) to range significantly from below 10% to above 60%. In this study we performed a LCA, combined with a Monte Carlo stochastic simulation, to determine the uncertainty in GHG emission differences between EVs and gasoline ICEs, by taking into account of all the possible variations that may affect the lifecycle GHG emissions estimates for EVs and ICEs based on the technologies already available in the market today. This study provides insights into the relative importance of the factors driving the lifecycle GHG emissions difference between the EVs and ICEs, and a measure of the probability for EVs providing benefits over ICEs globally today and projected to 2040. This paper offers critical perspective to inform the global debates on the role of transport electrification as means to a low carbon mobility future, and the implications for policy makers. 相似文献
19.
Facing multiple pressures, including its commitment to energy efficiency improvement, the current worldwide recession, and global warming concerns, China is making great efforts to maintain its continuous economic growth and reduce pollutant emissions. Many policies to encourage investing in energy efficiency and renewable energy have been issued. This article provides insights into the latest development of energy production, energy consumption and energy strategic planning and policies in China, and also describes the analysis, carried out by the authors as part of the Asian Energy Security project using the Long-range Energy Alternatives Planning (LEAP) modeling tool, of the impacts of implementing new and expected energy and environmental policies. 相似文献
20.
Carlos A. García Alfredo Fuentes Anna Hennecke Enrique Riegelhaupt Fabio Manzini Omar Masera 《Applied Energy》2011
The purpose of this work was to estimate GHG emissions and energy balances for the future expansion of sugarcane ethanol fuel production in Mexico with one current and four possible future modalities. We used the life cycle methodology that is recommended by the European Renewable Energy Directive (RED), which distinguished the following five system phases: direct Land Use Change (LUC); crop production; biomass transport to industry; industrial processing; and ethanol transport to admixture plants. Key variables affecting total GHG emissions and fossil energy used in ethanol production were LUC emissions, crop fertilization rates, the proportion of sugarcane areas that are burned to facilitate harvest, fossil fuels used in the industrial phase, and the method for allocation of emissions to co-products. The lower emissions and higher energy ratios that were observed in the present Brazilian case were mainly due to the lesser amount of fertilizers applied, also were due to the shorter distance of sugarcane transport, and to the smaller proportion of sugarcane areas that were burned to facilitate manual harvest. The resulting modality with the lowest emissions of equivalent carbon dioxide (CO2e) was ethanol produced from direct juice and generating surplus electricity with 36.8 kgCO2e/GJethanol. This was achieved using bagasse as the only fuel source to satisfy industrial phase needs for electricity and steam. Mexican emissions were higher than those calculated for Brazil (27.5 kgCO2e/GJethanol) among all modalities. The Mexican modality with the highest ratio of renewable/fossil energy was also ethanol from sugarcane juice generating surplus electricity with 4.8 GJethanol/GJfossil. 相似文献