首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon dioxide (CO2) emissions from the passenger-car sector in Japan are increasing rapidly and should be reduced cost-effectively in order to stabilize energy-related CO2 emissions in Japan. The purpose of the present paper is to clarify the most cost-effective mix of vehicles for reducing CO2 emissions and to estimate the subsidy that is necessary to achieve this vehicle mix. For this analysis, the energy system of Japan from 1988 to 2032 is modeled using a MARKAL model. The most cost-effective mix of vehicles is estimated by minimizing the total energy system cost under the constraint of an 8% energy-related CO2 emissions reduction nationally by 2030 from the CO2 emissions of 1990. Based on the results of the analysis, hybrid vehicles are the only type of clean-energy vehicle, and their share of the passenger car sector in 2030 will be 62%. By assuming the subsidization of hybrid vehicles, the same vehicle mix can be achieved without constraining CO2 emissions. The peak of the total subsidy estimated to be necessary is 1.225 billion US$/year in 2020, but the annual revenue of the assumed 31 US$/t-C carbon tax from the passenger car sector is sufficient to finance the estimated subsidy. This suggests that we should support the dissemination of hybrid vehicles through subsidization based on carbon tax.  相似文献   

2.
Between 1990 and 2006, the primary energy requirement of the Irish transport sector increased by 166%. Associated greenhouse gas (GHG) emissions have followed a corresponding trajectory, and are responsible—at least in part—for Ireland’s probable failure to meet its Kyoto targets. As in most countries, Ireland’s transport sector is almost totally reliant on oil—a commodity for which Ireland is totally dependent on imports—and therefore vulnerable to supply and price shocks. Conversely, the efficiency and carbon intensity of the Irish electricity supply system have both improved dramatically over the same period, with significant further improvements projected over the coming decade. This paper analyses the prospects for leveraging these changes by increasing the electrification of the Irish transport sector. Specifically, the potential benefits of plug-in hybrid-electric vehicles (PHEV) are assessed, in terms of reducing primary energy requirement (PER) and CO2 emissions. It is shown that, on a per-km basis, PHEV offer the potential for reductions of 50% or more in passenger car PER and CO2 intensity. However, the time required to turn over the existing fleet means that a decade or more will be required to significantly impact PER and emissions of the PC fleet.  相似文献   

3.
In 2006, energy-related CO2 emissions from transport energy in Ireland were 168% above 1990 levels. Private cars were responsible for approx 45% of transport energy demand in 2006 (excluding fuel tourism). The average annual growth of new cars between 1990 and 2006 was 5.2%. This paper focuses on these new cars entering the private car fleet, in particular the purchasing trend towards larger size cars. This has considerably offset the improvements in the technical efficiency of individual car models. The analysis was carried out on the detailed data of each individual new vehicle entering the fleet in 2000–2006. The average CO2 emissions per kilometre for new petrol cars entering the Irish fleet grew from 166 to 168 g CO2/km from 2000 to 2005 and reduced to 164 in 2006. For diesel cars the average reduced from 166 in 2000 to 161 in 2006. The paper also discusses how a recent change in vehicle registration taxation and annual motor tax had a significant impact purchasing trends by supporting lower emission vehicles. Cars with emissions up to 155 g CO2/km represented 41% of new private cars sold in Ireland in 2007 compared with 84% during the period July–November 2008.  相似文献   

4.
This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO2 emissions price pathway that achieves 450 ppmv CO2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy.  相似文献   

5.
Road transport is responsible for a large and growing share of CO2 emissions in most countries. A number of new fuel‐efficient vehicle technologies and renewable transport fuels are possible alternatives to conventional options but their deployment relies strongly on different policy measures. Even though a future higher use of transport biofuels and electric vehicles is likely to increase the interaction between the transportation sector and the stationary energy system (heat, power, etc.), these systems are often analysed separately. In this study, a transport module is developed and integrated into the MARKAL_Nordic energy system model. The transport module describes a range of vehicle technologies and fuel options as well as different paths for conversion of primary energy resources into transport fuels. The integrated model is utilized to analyse the impact of transport fuel tax designs on future cost‐effective fuel and technology choices in the Swedish transportation sector, as well as the consequences of these choices on system costs and CO2 emissions. The model, which is driven by cost‐minimization, is run to 2050 with various assumptions regarding transport fuel tax levels and tax schemes. The results stress the importance of fuel taxes to accelerate the introduction of fuel‐efficient vehicle technologies such as hybrids and plug‐in hybrids. Tax exemptions can make biofuels an economically favourable choice for vehicle users. However, due to limitations in biomass supply, a too strong policy‐focus on transport biofuels can lead to high system costs in relation to the CO2 abatement achieved. The modelling performed indicates that the effects caused by linkages between the transportation sector and the stationary energy system can be significant and integrated approaches are thus highly relevant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we describe how behavioral responses of carbon dioxide (CO2) tax increases are accounted for in tax revenue estimation in Sweden. The rationale for developing a method for this is a mix between that a CO2 tax is a primary climate policy tool aiming to reduce CO2 emissions and that the CO2 tax generates sizable tax revenues.  相似文献   

7.
This study examines the economics of energy-efficiency strategies for reducing CO2 emissions in the residential sector in Japan from the perspective of regional characteristics. For this study, the residential sector in Iwate prefecture was selected as representative of rural areas in Japan. In order to promote purchases of energy-efficient consumer appliances, the prefectural government is presumed to reimburse purchasers a part of the cost difference between energy efficient and conventional appliances. This paper begins with a discussion of the prefecture’s financial support for purchasers of energy efficient appliances and assumes that the payments come from prefectural government funds. This paper then looks at the effect of a carbon-tax refund on the reduction of CO2 emissions. The results show that, if half of the households use energy-efficient appliances, then CO2 emissions in the residential sector in the year 2020 will decreases from the BAU scenario, 0.726 Mt-C to 0.674 Mt-C. However, the Iwate prefectural government expends $105 million annually, which is 1.5% of the total tax revenue in the year 2003. The carbon-tax refund effectively encourages further reductions in CO2 emissions. Under the $20/tC carbon tax, proposed by the Ministry of the Environment, the carbon-tax refund leads to a reduction in residential CO2 emissions from 0.726 Mt-C to 0.712 Mt-C.  相似文献   

8.
This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO2) emissions in selected Asian countries during the 1980–2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.  相似文献   

9.
Even as the US debates an economy-wide CO2 cap-and-trade policy the transportation sector remains a significant oil security and climate change concern. Transportation alone consumes the majority of the US’s imported oil and produces a third of total US Greenhouse-Gas (GHG) emissions. This study examines different sector-specific policy scenarios for reducing GHG emissions and oil consumption in the US transportation sector under economy-wide CO2 prices. The 2009 version of the Energy Information Administration’s (EIA) National Energy Modeling System (NEMS), a general equilibrium model of US energy markets, enables quantitative estimates of the impact of economy-wide CO2 prices and various transportation-specific policy options. We analyze fuel taxes, continued increases in fuel economy standards, and purchase tax credits for new vehicle purchases, as well as the impacts of combining these policies. All policy scenarios modeled fail to meet the Obama administration’s goal of reducing GHG emissions 14% below 2005 levels by 2020. Purchase tax credits are expensive and ineffective at reducing emissions, while the largest reductions in GHG emissions result from increasing the cost of driving, thereby damping growth in vehicle miles traveled.  相似文献   

10.
New electrified vehicle concepts are about to enter the market in Europe. The expected gains in environmental performance for these new vehicle types are associated with higher technology costs. In parallel, the fuel efficiency of internal combustion engine vehicles and hybrids is continuously improved, which in turn advances their environmental performance but also leads to additional technology costs versus today’s vehicles. The present study compares the well-to-wheel CO2 emissions, costs and CO2 abatement costs of generic European cars, including a gasoline vehicle, diesel vehicle, gasoline hybrid, diesel hybrid, plug in hybrid and battery electric vehicle. The predictive comparison is done for the snapshots 2010, 2020 and 2030 under a new energy policy scenario for Europe. The results of the study show clearly that the electrification of vehicles offer significant possibilities to reduce specific CO2 emissions in road transport, when supported by adequate policies to decarbonise the electricity generation. Additional technology costs for electrified vehicle types are an issue in the beginning, but can go down to enable payback periods of less than 5 years and very competitive CO2 abatement costs, provided that market barriers can be overcome through targeted policy support that mainly addresses their initial cost penalty.  相似文献   

11.
This paper analyses the impact of an energy efficiency program for light vehicles in Brazil on emissions of carbon dioxide (CO2), the main greenhouse gas in the atmosphere. Several energy efficiency programs for light vehicles around the world are reviewed. The cases of Japan and Europe were selected for presentation here given their status as current and future world leaders in the control of passenger vehicle fuel consumption. The launching of the National Climate Change Plan and the pressure on the Brazilian car industry due to the world financial crisis make it a good time for the Brazilian government to implement such a program, and its various benefits are highlighted in this study. Three scenarios are established for Brazil covering the 2000–2030 period: the first with no efficiency goals, the second with the Japanese goals applied with a 10 years delay, and the third, with the Japanese goals applied with no delay. The consequences of a vehicular efficiency program and its middle and long-term effects on the consumption of energy and the CO2 emissions are quantified and discussed. The simulation results indicate that efficiency goals may make an important contribution to reducing vehicular emissions and fuel consumption in Brazil, compared to a baseline scenario.  相似文献   

12.
Using LMDI method to analyze transport sector CO2 emissions in China   总被引:1,自引:0,他引:1  
W.W. Wang  M. Zhang  M. Zhou 《Energy》2011,36(10):5909-5915
China has been the second CO2 emitter in the world, while the transportation sector accounts for a major share of CO2 emissions. Analysis of transportation sector CO2 emissions is help to decrease CO2 emissions. Thus the purpose of this paper is to investigate the potential factors influencing the change of transport sector CO2 emissions in China. First, the transport sector CO2 emissions over the period 1985–2009 is calculated based on the presented method. Then the presented LMDI (logarithmic mean Divisia index) method is used to find the nature of the factors those influence the changes in transport sector CO2 emissions. We find that: (1) Transport sector CO2 emissions has increased from 79.67 Mt in 1985 to 887.34 Mt in 2009, following an annual growth rate of 10.56%. Highways transport is the biggest CO2 emitter. (2) The per capita economic activity effect and transportation modal shifting effect are found to be primarily responsible for driving transport sector CO2 emissions growth over the study period. (3) The transportation intensity effect and transportation services share effect are found to be the main drivers of the reduction of CO2 emissions in China. However, the emission coefficient effect plays a very minor role over the study period.  相似文献   

13.
California has taken steps to reduce greenhouse gas emissions from the transportation sector. One example is the recent adoption of the Low Carbon Fuel Standard, which aims to reduce the carbon intensity of transportation fuels. To effectively implement this and similar policies, it is necessary to understand well-to-wheels emissions associated with distinct vehicle and fuel platforms, including those using electricity. This analysis uses an hourly electricity dispatch model to simulate and investigate operation of the current California grid and its response to added vehicle and fuel-related electricity demands in the near term. The model identifies the “marginal electricity mix” - the mix of power plants that is used to supply the incremental electricity demand from vehicles and fuels - and calculates greenhouse gas emissions from those plants. It also quantifies the contribution from electricity to well-to-wheels greenhouse gas emissions from battery-electric, plug-in hybrid, and fuel cell vehicles and explores sensitivities of electricity supply and emissions to hydro-power availability, timing of electricity demand (including vehicle recharging), and demand location within the state. The results suggest that the near-term marginal electricity mix for vehicles and fuels in California will come from natural gas-fired power plants, including a significant fraction (likely as much as 40%) from relatively inefficient steam- and combustion-turbine plants. The marginal electricity emissions rate will be higher than the average rate from all generation - likely to exceed 600 gCO2 equiv. kWh−1 during most hours of the day and months of the year - and will likely be more than 60% higher than the value estimated in the Low Carbon Fuel Standard. But despite the relatively high fuel carbon intensity of marginal electricity in California, alternative vehicle and fuel platforms still reduce emissions compared to conventional gasoline vehicles and hybrids, through improved vehicle efficiency.  相似文献   

14.
Faced with pressure from greenhouse gas reductions and energy price hikes, the Taiwan government is in the process of developing an energy tax regime to reflect environmental external costs and effectively curb energy consumption, as well as mitigate CO2 emissions through an adequate pricing system. This study utilizes a CGE model to simulate and analyze the economic impacts of the draft Energy Tax Bill and its complementary fiscal measures. Under the assumption of tax revenue neutrality, the use of energy tax revenue generated for the purpose of reducing income tax is the best choice with double dividend effects since it will effectively stimulate domestic consumption and investment, and, consequently, mitigate the negative impacts of the distortionary tax regime. The double dividend effect is less significant, however, when the supplementary measures being used are for government expenditure. Nevertheless, all supplementary measures have effectively reduced energy consumption, which means they have delivered at least the first dividend—in the sense of CO2 emissions control. It has been verified in this study that having adequate public-finance policy measures is the key to realizing the double dividend effect.  相似文献   

15.
Reducing energy consumption and CO2 emissions in the transport sector is a priority for Great Britain and other European countries as part of their agreements made in the Kyoto protocol and the Voluntary Agreement. To achieve these goals, it has been proposed to increase the market share of diesel vehicles which are more efficient than petrol ones. Based on partial approaches, previous research concluded that increasing the share of diesel vehicles will decrease CO2 emissions (see 1 and 18; Zervas, 2006). Unlike these approaches, I use an integral approach based on discrete choice models to analyse diesel vehicle penetration in a broader context of transport in Great Britain. I provide for the first time, empirical evidence which is in line with Bonilla's (2009) argument that only improvements in vehicle efficiency will not be enough to achieve their goals of mitigation of energy consumption and CO2 emissions. The model shows the technical limitations that the penetration of diesel vehicles faces and that a combination of improvements in public transportation and taxes on fuel prices is the most effective policy combination to reduce the total amount of energy consumption and CO2 emissions among the analysed dieselisation polices.  相似文献   

16.
In this study, CO2 emissions of Turkish manufacturing industry are calculated by using the fuel consumption data at ISIC revision 2, four digit level. Study covers 57 industries, for the 1995–2001 period. Log Mean Divisia Index (LMDI) method is used to decompose the changes in the CO2 emissions of manufacturing industry into five components; changes in activity, activity structure, sectoral energy intensity, sectoral energy mix and emission factors. Mainly, it is found that changes in total industrial activity and energy intensity are the primary factors determining the changes in CO2 emissions during the study period. It is also indicated that among the fuels used, coal is the main determining factor and among the sectors, 3710 (iron and steel basic industries) is the dirtiest sector dominating the industrial CO2 emissions in the Turkish manufacturing industry.  相似文献   

17.
《Energy Policy》2005,33(12):1499-1507
With the rapid economic growth in China, the Chinese road transport system is becoming one of the largest and most rapidly growing oil consumers in China. This paper attempts to present the current status and forecast the future trends of oil demand and CO2 emissions from the Chinese road transport sector and to explore possible policy measures to contain the explosive growth of Chinese transport oil consumption. A bottom-up model was developed to estimate the historical oil consumption and CO2 emissions from China's road transport sector between 1997 and 2002 and to forecast future trends in oil consumption and CO2 emissions up to 2030. To explore the importance of policy options of containing the dramatic growth in Chinese transport oil demand, three scenarios regarding motor vehicle fuel economy improvements were designed in predicting future oil use and CO2 emissions. We conclude that China's road transportation will gradually become the largest oil consumer in China in the next two decades but that improvements in vehicle fuel economy have potentially large oil-saving benefits. In particular, if no control measures are implemented, the annual oil demand by China's road vehicles will reach 363 million tons by 2030. On the other hand, under the low- and high-fuel economy improvement scenarios, 55 and 85 million tons of oil will be saved in 2030, respectively. The scenario analysis suggests that China needs to implement vehicle fuel economy improvement measures immediately in order to contain the dramatic growth in transport oil consumption. The imminent implementation is required because (1) China is now in a period of very rapid growth in motor vehicle sales; (2) Chinese vehicles currently in the market are relatively inefficient; and (3) the turnover of a fleet of inefficient motor vehicles will take a long time.  相似文献   

18.
A power grid with a lower global warming impact has the potential to extend its benefits to energy systems that conventionally do not utilize electricity as their primary energy source. This study presents the case of Ontario where the role of complementing policies in transitioning electricity systems is assessed. The policy cost to incentivize surplus low emission electricity via an established mechanism for the transportation sector has been estimated (Electric and Hydrogen Vehicle Incentive Program). It is estimated that the 9056 (4760 battery and 4296 plug-in hybrid) electric vehicles that qualified for incentives from the provincial government at the end of 2016 vehicles cost $732.5-$883.9 to reduce a tonne of CO2,e emissions over an eight year lifetime. This is then compared with the potential cost incurred by two power to gas energy hubs that utilize clean surplus electricity from the province to offset emissions within the natural gas sector. The use of hydrogen-enriched natural gas and synthetic natural gas (SNG) offsets emissions at $87.8 and $228.7 per tonne of CO2,e in the natural gas sector. This analysis highlights the potential future costs for incentivizing new clean technologies such as electric vehicles and power to gas energy hubs in jurisdictions with a transitioning electricity system.  相似文献   

19.
This study determines the factors responsible for the growth of transport sector CO2 emissions in 20 Latin American and Caribbean (LAC) countries during the 1980–2005 period by decomposing the emissions growth into components associated with changes in fuel mix (FM), modal shift and economic growth, as well as changes in emission coefficients (EC) and transportation energy intensity (EI). The key finding of the study is that economic growth and the changes in transportation EI are the principal factors driving transport sector CO2 emission growth in the countries considered. While economic growth is responsible for the increasing trend of transport sector CO2 emissions in Argentina, Brazil, Costa Rica, Peru and Uruguay, the transportation EI effect is driving CO2 emissions in Bolivia, the Caribbean, Cuba, Ecuador, Guatemala, Honduras, Other Latin America, Panama and Paraguay. Both economic activity (EA) and EI effects are found responsible for transport sector CO2 emissions growth in the rest of the Latin American countries. In order to limit CO2 emissions from the transportation sector in LAC countries, decoupling of the growth of CO2 emissions from economic growth is necessary; this can be done through policy instruments to promote fuel switching, modal shifting and reductions in transport sector EI. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The grey forecasting model, GM(1,1) was adopted in this study to capture the development trends of the number of motor vehicles, vehicular energy consumption and CO2 emissions in Taiwan during 2007–2025. In addition, the simulation of different economic development scenarios were explored by modifying the value of the development coefficient, a, in the grey forecasting model to reflect the influence of economic growth and to be a helpful reference for realizing traffic CO2 reduction potential and setting CO2 mitigation strategies for Taiwan. Results showed that the vehicle fleet, energy demand and CO2 emitted by the road transportation system continued to rise at the annual growth rates of 3.64%, 3.25% and 3.23% over the next 18 years. Besides, the simulation of different economic development scenarios revealed that the lower and upper bound values of allowable vehicles in 2025 are 30.2 and 36.3 million vehicles, respectively, with the traffic fuel consumption lies between 25.8 million kiloliters to 31.0 million kiloliters. The corresponding emission of CO2 will be between 61.1 and 73.4 million metric tons in the low- and high-scenario profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号