首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sledgehammer is a component of Isabelle/HOL that employs resolution-based first-order automatic theorem provers (ATPs) to discharge goals arising in interactive proofs. It heuristically selects relevant facts and, if an ATP is successful, produces a snippet that replays the proof in Isabelle. We extended Sledgehammer to invoke satisfiability modulo theories (SMT) solvers as well, exploiting its relevance filter and parallel architecture. The ATPs and SMT solvers nicely complement each other, and Isabelle users are now pleasantly surprised by SMT proofs for problems beyond the ATPs’ reach.  相似文献   

2.
3.
4.
5.
We report on an experiment in combining the theorem prover Isabelle with automatic first-order arithmetic provers to increase automation on the verification of distributed protocols. As a case study for the experiment we verify several averaging clock synchronization algorithms. We present a formalization of Schneider’s generalized clock synchronization protocol [Sch87] in Isabelle/HOL. Then, we verify that the convergence functions used in two clock synchronization algorithms, namely, the Interactive Convergence Algorithm (ICA) of Lamport and Melliar-Smith [LMS85] and the Fault-tolerant Midpoint algorithm of Lundelius–Lynch [LL84], satisfy Schneider’s general conditions for correctness. The proofs are completely formalized in Isabelle/HOL. We identify parts of the proofs which are not fully automatically proven by Isabelle built-in tactics and show that these proofs can be handled by automatic first-order provers with support for arithmetics.  相似文献   

6.
We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation trees. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems for various flavors of first-order logic. Soundness becomes interesting as soon as one allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof systems for first-order logic augmented with inductive predicate definitions studied in the literature. All the discussed results are formalized using Isabelle/HOL’s recently introduced support for codatatypes and corecursion. The development illustrates some unique features of Isabelle/HOL’s new coinductive specification language such as nesting through non-free types and mixed recursion–corecursion.  相似文献   

7.
Formal verification methods have gained increased importance due to their ability to guarantee system correctness and improve reliability. Nevertheless, the question how proofs are to be formalized in theorem provers is far from being trivial, yet very important as one needs to spend much more time on verification if the formalization was not cleverly chosen. In this paper, we develop and compare two different possibilities to express coinductive proofs in the theorem prover Isabelle/HOL. Coinduction is a proof method that allows for the verification of properties of also non-terminating state-transition systems. Since coinduction is not as widely used as other proof techniques as e.g. induction, there are much fewer “recipes” available how to formalize corresponding proofs and there are also fewer proof strategies implemented in theorem provers for coinduction. In this paper, we investigate formalizations for coinductive proofs of properties on state transition sequences. In particular, we compare two different possibilities for their formalization and show their equivalence. The first of these two formalizations captures the mathematical intuition, while the second can be used more easily in a theorem prover. We have formally verified the equivalence of these criteria in Isabelle/HOL, thus establishing a coalgebraic verification framework. To demonstrate that our verification framework is suitable for the verification of compiler optimizations, we have introduced three different, rather simple transformations that capture typical problems in the verification of optimizing compilers, even for non-terminating source programs.  相似文献   

8.
We show how to mechanise equational proofs about higher-order languages by using the primitive proof principles of first-order abstract syntax over one-sorted variable names. We illustrate the method here by proving (in Isabelle/HOL) a technical property which makes the method widely applicable for the λ-calculus: the residual theory of β is renaming-free up-to an initiality condition akin to the so-called Barendregt Variable Convention. We use our results to give a new diagram-based proof of the development part of the strong finite development property for the λ-calculus. The proof has the same equational implications (e.g., confluence) as the proof of the full property but without the need to prove SN. We account for two other uses of the proof method, as presented elsewhere. One has been mechanised in full in Isabelle/HOL.  相似文献   

9.
Software transactional memory (STM) provides programmers with a high-level programming abstraction for synchronization of parallel processes, allowing blocks of codes that execute in an interleaved manner to be treated as atomic blocks. This atomicity property is captured by a correctness criterion called opacity, which relates the behaviour of an STM implementation to those of a sequential atomic specification. In this paper, we prove opacity of a recently proposed STM implementation: the Transactional Mutex Lock (TML) by Dalessandro et al. For this, we employ two different methods: the first method directly shows all histories of TML to be opaque (proof by induction), using a linearizability proof of TML as an assistance; the second method shows TML to be a refinement of an existing intermediate specification called TMS2 which is known to be opaque (proof by simulation). Both proofs are carried out within interactive provers, the first with KIV and the second with both Isabelle and KIV. This allows to compare not only the proof techniques in principle, but also their complexity in mechanization. It turns out that the second method, already leveraging an existing proof of opacity of TMS2, allows the proof to be decomposed into two independent proofs in the way that the linearizability proof does not.  相似文献   

10.
The theorem of Sylow is proved in Isabelle HOL. We follow the proof by Wielandt that is more general than the original and uses a nontrivial combinatorial identity. The mathematical proof is explained in some detail, leading on to the mechanization of group theory and the necessary combinatorics in Isabelle. We present the mechanization of the proof in detail, giving reference to theorems contained in an appendix. Some weak points of the experiment with respect to a natural treatment of abstract algebraic reasoning give rise to a discussion of the use of module systems to represent abstract algebra in theorem provers. Drawing from that, we present tentative ideas for further research into a section concept for Isabelle.  相似文献   

11.
Term rewriting has been shown to be a good environment for both programming and proving. For analysing and debugging rule-based programs, we propose in this work a formalism based on the rewriting calculus with explicit substitutions (ρσ-calculus). This formalism also allows us to build the proof terms of rewriting derivations. Therefore, term rewriting proofs can be exported to other systems by translating them into the corresponding syntaxes. That is, using a proof checker, one can certify these proofs and vice versa, this method allows us to get term rewriting in proof assistants using an external system. Our method not only works with syntactic rewriting but also with rewriting modulo a set of axioms (e.g. associativity-commutativity).  相似文献   

12.
In this paper we present a method for automated induction proofs about partial functions. We show that most well-known techniques developed for (explicit) induction theorem proving are unsound when dealing with partial functions. But surprisingly, by slightly restricting the application of these techniques, it is possible to develop a calculus for automated induction proofs with partial functions. In particular, under certain conditions one may even generate induction schemes from the recursions of nonterminating algorithms. The need for such induction schemes and the power of our calculus have been demonstrated on a large collection of nontrivial theorems (including Knuth and Bendix's critical pair lemma). In this way, existing induction theorem provers can be directly extended to partial functions without major changes of their logical framework.  相似文献   

13.
Automated theorem proving essentially amounts to solving search problems. Despite significant progress in recent years theorem provers still have many shortcomings. The use of machine-learning techniques such as schemas is acknowledged as promising, but difficult to apply in the area of theorem proving. We propose a simple form of schemas, and to make use of a schema heuristically by integrating it with a search-guiding heuristic. Experiments have demonstrated that the approach allows a theorem prover to find proofs significantly faster and to prove hard problems that were out of reach before.  相似文献   

14.
I present a formalization in Isabelle/HOL of the resolution calculus for first-order logic with formal soundness and completeness proofs. To prove the calculus sound, I use the substitution lemma, and to prove it complete, I use Herbrand interpretations and semantic trees. The correspondence between unsatisfiable sets of clauses and finite semantic trees is formalized in Herbrand’s theorem. I discuss the difficulties that I had formalizing proofs of the lifting lemma found in the literature, and I formalize a correct proof. The completeness proof is by induction on the size of a finite semantic tree. Throughout the paper I emphasize details that are often glossed over in paper proofs. I give a thorough overview of formalizations of first-order logic found in the literature. The formalization of resolution is part of the IsaFoL project, which is an effort to formalize logics in Isabelle/HOL.  相似文献   

15.
Boogie is a verification condition generator for an imperative core language. It has front-ends for the programming languages C# and C enriched by annotations in first-order logic, i.e. pre- and postconditions, assertions, and loop invariants. Moreover, concepts like ghost fields, ghost variables, ghost code and specification functions have been introduced to support a specific modeling methodology. Boogie’s verification conditions—constructed via a wp calculus from annotated programs—are usually transferred to automated theorem provers such as Simplify or Z3. This also comprises the expansion of language-specific modeling constructs in terms of a theory describing memory and elementary operations on it; this theory is called a machine/memory model. In this paper, we present a proof environment, HOL-Boogie, that combines Boogie with the interactive theorem prover Isabelle/HOL, for a specific C front-end and a machine/memory model. In particular, we present specific techniques combining automated and interactive proof methods for code verification. The main goal of our environment is to help program verification engineers in their task to “debug” annotations and to find combined proofs where purely automatic proof attempts fail.  相似文献   

16.
Locales are a module system for managing theory hierarchies in a theorem prover through theory interpretation. They are available for the theorem prover Isabelle. In this paper, their semantics is defined in terms of local theories and morphisms. Locales aim at providing flexible means of extension and reuse. Theory modules (which are called locales) may be extended by definitions and theorems. Interpretation to Isabelle’s global theories and proof contexts is possible via morphisms. Even the locale hierarchy may be changed if declared relations between locales do not adequately reflect logical relations, which are implied by the locales’ specifications. By discussing their design and relating it to more commonly known structuring mechanisms of programming languages and provers, locales are made accessible to a wider audience beyond the users of Isabelle. The discussed mechanisms include ML-style functors, type classes and mixins (the latter are found in modern object-oriented languages).  相似文献   

17.
Formal proofs generated by mechanised theorem proving systems may consist of a large number of inferences. As these theorem proving systems are usually very complex, it is extremely difficult if not impossible to formally verify them. This calls for an independent means of ensuring the consistency of mechanically generated proofs. This paper describes a method of recording HOL proofs in terms of a sequence of applications of inference rules. The recorded proofs can then be checked by an independent proof checker. Also described in this paper is an implementation of a proof checker which is able to check a practical proof consisting of thousands of inference steps.  相似文献   

18.
The considerable mathematical knowledge encoded by the Flyspeck project is combined with external automated theorem provers (ATPs) and machine-learning premise selection methods trained on the Flyspeck proofs, producing an AI system capable of proving a wide range of mathematical conjectures automatically. The performance of this architecture is evaluated in a bootstrapping scenario emulating the development of Flyspeck from axioms to the last theorem, each time using only the previous theorems and proofs. It is shown that 39 % of the 14185 theorems could be proved in a push-button mode (without any high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation. The necessary work involves: (i) an implementation of sound translations of the HOL Light logic to ATP formalisms: untyped first-order, polymorphic typed first-order, and typed higher-order, (ii) export of the dependency information from HOL Light and ATP proofs for the machine learners, and (iii) choice of suitable representations and methods for learning from previous proofs, and their integration as advisors with HOL Light. This work is described and discussed here, and an initial analysis of the body of proofs that were found fully automatically is provided.  相似文献   

19.
For close to a century, despite the efforts of fine minds that include Hilbert and Ackermann, Tarski and Bernays, ukasiewicz, and Rose and Rosser, various proofs of a number of significant theorems have remained missing – at least not reported in the literature – amply demonstrating the depth of the corresponding problems. The types of such missing proofs are indeed diverse. For one example, a result may be guaranteed provable because of being valid, and yet no proof has been found. For a second example, a theorem may have been proved via metaargument, but the desired axiomatic proof based solely on the use of a given inference rule may have eluded the experts. For a third example, a theorem may have been announced by a master, but no proof was supplied. The finding of missing proofs of the cited types, as well as of other types, is the focus of this article. The means to finding such proofs rests with heavy use of McCune's automated reasoning program OTTER, reliance on a variety of powerful strategies this program offers, and employment of diverse methodologies. Here we present some of our successes and, because it may prove useful for circuit design and program synthesis as well as in the context of mathematics and logic, detail our approach to finding missing proofs. Well-defined and unmet challenges are included.  相似文献   

20.
We describe a compressing translation from SAT solver generated propositional resolution refutation proofs to classical natural deduction proofs. The resulting proof can usually be checked quicker than one that simply simulates the original resolution proof. We use this result in interactive theorem provers, to speed up reconstruction of SAT solver generated proofs. The translation is fast and scales up to large proofs with millions of inferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号