首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
为了确定A6N01-T5铝合金挤压型材MIG焊接接头发生疲劳断裂的原因,本文采用高频疲劳试验机对A6N01-T5铝合金MIG焊接试样进行低周疲劳拉伸试验,研究了A6N01-T5铝合金焊接接头低周疲劳行为、疲劳裂纹表面和断口表面以及缺陷对疲劳性能的影响。结果表明:在热影响区存在一个明显的软化区,该软化区在疲劳拉伸实验中变形较严重;A6N01铝合金焊接试样的疲劳裂纹源萌生于气孔及夹杂等缺陷产生应力集中处;焊缝近表面的气孔及内部的夹杂是裂纹快速扩展的诱因。  相似文献   

2.
为了测定6005-T6铝合金焊接接头的疲劳极限,对4 mm厚6005-T6铝合金采用手工MIG焊焊接,并且焊后在试板背面进行通水冷却,使用高频疲劳试验机对焊接试件进行疲劳试验,并绘制了S-N曲线。对疲劳断口形貌和焊接接头的显微组织进行分析,研究了疲劳断裂的原因。结果表明:铝合金手工MIG焊接头在50%存活率情况下,其高周(10~7)疲劳极限应力为125 MPa,S-N拟合曲线为σ_(max)=701N_f~(-0.127)。不同应力状态下疲劳裂纹均萌发于试样的表面。高应力状态下,断口中很难发现扩展辉纹,与静态拉伸断口相似。低应力状态断口扩展区存在大量扩展辉纹。热影响区的粗晶区和晶界聚集的第二相对疲劳性能不利。  相似文献   

3.
《电焊机》2015,(8)
对MIG焊接得到的板厚为10 mm的7N01S-T5铝合金焊接接头进行疲劳试验,研究其疲劳性能,通过对疲劳试验后的试样进行金相组织观察和断口SEM观察,分析其疲劳试验前后显微组织变化以及断裂的原因。结果表明,7N01铝合金焊接接头的疲劳极限为111.6 MPa,经过疲劳试验的焊接接头断裂在硬度值最低的焊缝处,裂纹沿垂直于焊缝柱状晶的方向扩展。疲劳源处未见明显的夹渣、气孔等缺陷。焊缝处析出相聚集在晶界,部分区域出现了液化裂纹。  相似文献   

4.
对42 mm厚A6N01S-T5铝合金型材进行双面搅拌摩擦焊接,焊后沿焊缝横截面将接头分为上、中、下三层分别进行疲劳试验,探究其疲劳性能;通过金相组织观察、显微硬度测试、断口分析等方法分析接头疲劳断裂的原因。结果表明,接头疲劳断裂多发生在热影响区,上、中、下三层的疲劳极限分别为103.9 MPa、101.4 MPa和102.2 MPa;焊核区微观组织为细小等轴晶粒,热影响区组织形貌与母材接近,略有粗化现象;接头显微硬度分布呈W型,母材硬度约为108 MPa,焊核区约为75 HV,距离焊缝中心约10 mm的HAZ软化区硬度值最低,约为55~60 HV;疲劳源多为氧化物夹杂造成的应力集中诱发形成。  相似文献   

5.
张欣盟  高士康  李高辉  张海峰  周利  王苹 《焊接学报》2023,(9):30-36+130-131
通过对3.3 mm厚6005A-T6铝合金型材双轴肩搅拌摩擦焊接头进行疲劳试验,分析型材平行段宽度及厚度对试件疲劳性能的影响;并结合典型参数下焊接接头的宏观成形及其微观组织演变,揭示型材双轴肩搅拌摩擦焊接头的断裂行为.结果表明,典型参数下(转速1 000 r/min、焊接速度100 mm/min、平行段宽度和厚度分别为11.8 mm和3.1 mm)接头的拉伸断裂位置位于后退侧热影响区;型材接头前进侧热力影响区晶粒组织的特征会影响型材疲劳裂纹产生与开动;疲劳断口扫描分析显示断口无明显缺陷,试件疲劳条带的扩展区和瞬断区具有典型的疲劳断裂特征,断裂发生在前进侧热影响区位置.  相似文献   

6.
《电焊机》2020,(1)
在相同工艺参数下,对6005-T6铝合金型材双轴肩搅拌摩擦焊接头进行一次返修,并对其疲劳试件断口进行SEM扫描与分析。结果表明:返修后焊接接头的疲劳强度低于未返修焊接接头,随着应力的增大,从低应力区到高应力区,两种接头疲劳强度差异缩小;由升降法计算得未返修焊接接头疲劳极限为101.7 MPa,返修接头疲劳极限为75 MPa。断口分析表明:一次返修后疲劳试件未发现明显缺陷,断裂位置主要集中在母材,启裂区表面平滑,扩展二次裂纹少,疲劳纹清晰且粗大,终断区为韧性断口,可观察到大量浅韧窝。  相似文献   

7.
6061-T6铝合金回填式搅拌摩擦点焊疲劳性能分析   总被引:6,自引:6,他引:0       下载免费PDF全文
对6061-T6铝合金点焊接头进行单点疲劳试验,确定6061-T6铝合金回填式搅拌摩擦点焊的疲劳断裂原因,得出6061-T6铝合金的S-N曲线以及条件疲劳极限.通过对载荷水平为1.5 kN的6061-T6 RFSSW疲劳试样进行金相分析以及断口扫描分析,得到了6061-T6铝合金疲劳断裂原因以及疲劳断口特征.结果表明,6061-T6点焊接头中的钩状缺陷和上下板结合处缺口尖端的应力集中是造成疲劳破坏的主要原因,疲劳裂纹始于上下板搭接处焊点的钩状缺陷外边缘,即缺口尖端处;在焊接过程中,应通过优化工艺参数尽量减小钩状缺陷的尺寸以及降低缺口处的应力集中,从而提高焊点的疲劳寿命.  相似文献   

8.
对采用双轴肩搅拌摩擦焊的两种不同焊前表面状态6005A-T6铝合金型材焊接接头进行脉动拉伸疲劳试验。断口疲劳断裂分析结果表明:焊前打磨时接头疲劳强度略高;焊前打磨状态对6005A-T6铝合金型材双轴肩搅拌摩擦焊接头疲劳强度影响不大。电镜扫描结果显示:两种类型接头试件宏观断裂形貌均为纤维状,启裂位置均集中在热影响区(焊核边缘),未出现明显缺陷;启裂区断口齐平光滑、疲劳源清晰;扩展区可观察到相互平行的塑性疲劳条带;终断区断口表现为韧性断裂,呈明显的等轴韧窝型。  相似文献   

9.
对A6N01S-T5铝合金进行一次焊接和三次补焊试验,系统分析补焊次数对接头微观组织和力学性能的影响。结果表明,焊缝区由α-Al以及(α-Al+Mg_2Si)的伪共晶组织构成;随着补焊次数的增加,焊缝区组织变化不大,热影响区产生过时效现象形成软化区。焊缝区显微硬度高于热影响区,且随补焊次数的增加热影响区范围增大,显微硬度值下降;这主要与热影响区过时效现象加剧有关。补焊对焊接接头抗拉强度和弯曲性能影响较小,而对延伸率影响较大;随着补焊次数的增加,延伸率不断下降。拉伸试样均断裂于热影响区,为接头力学性能的薄弱部分。  相似文献   

10.
采用高频疲劳试验机对A6N01铝合金MIG焊接试样进行低周拉伸疲劳试验,研究了A6N01铝合金焊接接头疲劳过程中表面形貌变化和疲劳断裂后的断口形貌。结果表明:随着循环应力的加载,在试样产生裂纹之前,晶界处位错塞积严重,产生永久滑移带,裂纹源萌生于永久滑移带。气孔、夹杂等缺陷处应力集中较大,也容易称为裂纹源。在裂纹扩展过程中,主裂纹对次裂纹的扩展具有屏蔽作用。裂纹在相邻的不同位向的晶粒中扩展时,裂纹扩展方向发生变化。A6N01铝合金焊接接头疲劳断口有较多浅显的韧窝,说明A6N01铝合金焊接接头具有良好塑性。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

20.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号