共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种高效宽带功率放大器的设计方法,并基于GaN HEMT 器件CGH40010F 设计了验证电路。利用功放管输出寄生参数的等效网络,将基于连续型功放理论得到的负载阻抗转换到封装参考面上,并利用多谐波双向牵引技术对转换后的负载阻抗进行适当调整,使二次谐波负载阻抗位于高效率区以及基频负载阻抗能够获得高功率附加效率和高输出功率。谐波阻抗位于高效率区使得匹配网络的设计简化为基频匹配网络的设计,降低了对谐波阻抗匹配的难度和宽带匹配网络设计的复杂度。实验结果表明:在1GHz -3GHz 工作频带(相对带宽100%)内,功率附加效率在53%-64.6%之间,输出功率为39.5±2dBm,增益为11.5±2dB,二次谐波小于-15dBc,三次谐波小于-25dBc。 相似文献
2.
3.
针对L频段低谐波失真功率放大器的设计,进行线性与非线性电路分析仿真和电路的优化设计。从理论上分析了甲乙类功率放大器的谐波失真特性,通过采用具有抑制谐波特性的输出匹配电路以降低功放产生的谐波失真。测试得到电路的关键技术指标为:工作频率范围1 390~1 510MHz,增益35 dB,1 dB压缩点33 dBm,并获得了满意的谐波抑制指标,在1 480 MHz、输出功率33dBm时,二、三次谐波分别为-70 dBc和-63 dBc。结果表明在功放设计中,优化设计输出匹配电路可以有效抑制功放的谐波失真。 相似文献
4.
高效率低谐波失真E类射频功率放大器的设计 总被引:1,自引:0,他引:1
引言
近年来,随着无线通讯的飞速发展,无线通信里的核心部分——无线收发器越来越要求更低的功耗、更高的效率以及更小的体积,而作为收发器中的最后一级,功率放大器所消耗的功率在收发器中已占到了60%~90%,严重影响了系统的性能。所以,设计一种高效低谐波失真的功率放大器对于提高收发器效率,降低电源损耗,提高系统性能都有十分重大的意义。 相似文献
5.
高效率低失真功率放大器 总被引:1,自引:0,他引:1
引入△-∑转化器中处理量化噪声的方法,对一种新的功率放大器结构进行理论分析。这种新结构结合了线性放大器与非线性放大器各自的优点,同时具有高效率和低失真的特性。理论计算与SPICE模拟结果均表明,它的确是一种有效的功率放大器结构。 相似文献
6.
针对超宽带功率放大器(UWB PA)匹配电路的设计难点,提出一种结合连续型功放理论、多谐波双向牵引低损耗匹配(LLM)技术以及切比雪夫低通滤波器阻抗变换原理的超宽带功率放大器设计方法。并利用此方法设计一款基于CREE公司CGH40025F-Ga N HEMT,工作频带为400-3900MHz的超宽带功率放大器。实验结果表明:在输入功率为30d Bm(1W)时,增℃为12.25±0.75dB,输出功率大于41.5dBm(14.1W),功率附加效率(PAE)为41-65.1%,噪声系数(NF)控制在2.5dB以内,功率附加效率较同等带宽设备有近10%的提升。 相似文献
7.
将EFJ模式功率放大器应用于Doherty功率放大器的载波功率放大器,利用EFJ类功率放大器的阻抗特性改善了Doherty功率放大器的带宽。此外,还引入后谐波控制网络来提高Doherty功率放大器的效率。功放的输入匹配电路采用阶跃式阻抗匹配来进一步拓展工作带宽。使用CGH40010F GaN 晶体管设计并加工完成了一款宽带高效率Doherty功率放大器。测试结果显示,在3.2~3.7GHz 频段内,饱和输出功率达到43dBm,饱和漏极效率60%~72.5%,增益大于10dB。功率回退6dB时,漏极效率40%~48.5%。 相似文献
8.
针对传统Doherty功率放大器功率回退范围小、有源牵引不足的缺陷,在传统Doherty基础上进行改进,采用不同峰值输出功率功放管的非对称Doherty结构,并结合多谐波双向牵引技术,设计了应用于LTE-TDD基站的功率放大器.ADS仿真结果显示,在峰值输出功率回退10 dB处,3阶互调(IMD3)为-26 dBc,功率附加效率(PAE)达到47.6%,与AB类平衡功放相比,提高近30%,在保证线性度的同时,实现了高功率回退范围内的高效率;S11和S22小于-11 dB,增益约为16dB,且1 dB压缩点向3 dB压缩点过渡较为平滑,有利于与数字预失真系统结合. 相似文献
9.
基于功率放大器(PA)效率提高技术,设计了一套包络跟踪(ET)功率放大器系统,射频(RF)功率放大器的漏极采用三电位G类结构的包络跟踪放大器提供自适应电压偏置,包络放大器包含两个自主设计的横向双扩散晶体管(LDMOS)开关管,RF功率放大器采用自主研发的LDMOS功率放大管进行优化匹配设计.在连续波(CW)信号激励下,28 V恒定电压下测得功率放大器在2.11 GHz下饱和输出功率为40 dBm,饱和漏极效率为51%,输出功率回退8 dB时的漏极效率为22%,采用包络跟踪后提高至40%.在8 dB峰均比(PAR) WCDMA信号激励下,28 V恒定电压下测得功率放大器的平均效率为21%,采用包络跟踪后提高至35%.实验结果表明,采用自主设计的LDMOS开关管和LDMOS功率放大管应用到包络跟踪系统后,功率放大器的效率明显提高,验证了包络跟踪技术的优势和自主设计的LDMOS管芯的优越性. 相似文献
10.
宽带大功率微波功率放大器在通信发射机的应用越来越多,具有高击穿场强和高功率密度的优点的第三代半导体GaN技术越来越适用于宽带功率放大器的应用。本文基于GaN功率管的大信号仿真模型,采用宽带匹配技术进行功率管的匹配电路设计。通过ADS软件仿真和优化,设计了一款工作在0.5-4GHz宽频带范围的功率放大器。仿真结果显示,在0.5-4GHz内,功率附加效率(Power added efficiency, PAE)超过60%,增益大于11dB,增益平坦度为±1.5dB,且端口驻波性能良好,满足了发射机系统的要求。 相似文献
11.
随着全球信息化社会对高速数据通信的需求不断攀升,现有的无线接入技术基本都处于百兆量级,已经无法满足未来多媒体资源大数据量的实际应用需求。其中为满足室内短距离高速无线通信千兆级以上的需求,利用60 GHz频段进行通信已经成为一个重要的技术途径。利用成熟的0.15μm赝配高电子迁移率晶体管(PHEMT)工艺设计了一个工作在60 GHz频段的中功率宽带放大器,频率覆盖50~64 GHz,增益12 dB,线性输出功率14 dBm,饱和输出功率16.5 dBm,功率附加效率为12%。性能与65 nm CMOS工艺设计芯片相当,但前期系统验证和芯片开发阶段的投入成本远低于65 nm RF CMOS,适用于前期系统验证工作。 相似文献
12.
提出了一款4G 频段全覆盖高输出功率高效率功率放大器。设计采用的是Cree 公司提供的GaN HEMT 晶体管CGH40025F。基于F 类功率放大器的设计理论,通过对晶体管的输入输出端均采用谐波控制网络,并将渐变式阻抗匹配这种宽带匹配方法应用到输入输出端的基波匹配当中。在实现二次谐波阻抗匹配至低阻抗区,三次谐波阻抗匹配至高阻抗区的同时基波阻抗被匹配至50Ω附近,从而有效提高了功率放大器的输出功率、效率和带宽。最终的测试结果表明在1. 7 ~ 2. 7 GHz 频率范围内,漏极效率维持在62. 55% ~ 76%,输出功率在20 ~ 41W,增益在10 dB 以上。仿真与实测结果基本一致。 相似文献
13.
14.
15.
E类功率放大器(PA)具有设计简单和高效率的优点,然而频率较高时功率管的寄生输出电容大于E类功率放大器所需的电容,这个寄生输出电容导致E类功率放大器的效率降低.提出一种高频E类功率放大器的设计方法,使用负载牵引得到考虑寄生输出电容后的最佳负载阻抗,再结合谐波阻抗控制方法设计E类功率放大器.采用飞思卡尔的横向扩散金属氧化物半导体(LDMOS)功率管MRF21010设计了一款工作在930~960 MHz的E类功率放大器.测试数据表明,该功率放大器的输出功率为36.8 dBm (4.79W),具有79.4%的功率附加效率. 相似文献
16.
设计并实现了一款工作在3.5 GHz全球微波接入互操作性(WiMAX)波段的高效率、线性Doherty功率放大器。通过合理控制载波功放的包络阻抗、谐波阻抗以及利用Doherty载波功放和峰值功放线性抵消原理,使得Doherty功率放大器同时满足高的效率和线性度。仿真结果表明:通过合理调节峰值功放的栅极偏压,所设计的Doherty功放在保证三阶交调失真(IMD3)和五阶交调失真(IMD5)低于-30 dBc时,功率附加效率(PAE)可高达63%。 相似文献
17.
18.
基于0.13 μm CMOS工艺,采用多频点叠加的方式,设计了一种K波段宽带功率放大器。输入级采用晶体管源极感性退化方式,实现了宽带输入匹配。驱动级采用自偏置共源共栅放大器,为电路提供了较高的增益。输出级采用共源极放大器,保证电路具有较高的输出功率。后仿真结果表明,在26 GHz处,该功率放大器的增益为22 dB,-3 dB带宽覆盖范围为22.5~30.5 GHz,输出功率1 dB压缩点为8.51 dBm,饱和输出功率为11.6 dBm,峰值附加功率效率为18.7%。 相似文献
19.
功率放大器是射频前端中的关键部件,宽带是目前功率放大器的主要发展趋势。基于碳化硅(SiC)宽禁带功率器件,利用ADS仿真软件,依据宽带功率放大器的各项指标进行电路的设计、优化和仿真,制作了500~2 000 MHz波段宽带功率放大器,并对放大器进行了性能测试和环境实验。测试结果表明利用该方法设计宽带功率放大器是可行的,SiC宽禁带功率器件具有较宽的工作带宽。 相似文献
20.
针对未来无线通信系统中的宽带和效率问题,设计了一种宽带高效率的J类功率放大器。为了减少谐波阻抗对效率的影响,该J类功率放大器在输出匹配网络中采用了谐波控制单元,并通过对晶体管模型的简化,综合出一种较好的匹配网络。另外,在输入匹配网络中,使用了具有宽带效应的混合集中和分布元件的π形匹配网络。设计中使用10 W GaN HEMT晶体管对理论进行验证,测试结果显示,在2.2 GHz~2.8 GHz之间的频带内,J类功率放大器的漏极效率大于61%,增益大于10.4 dB。该J类功率放大器在下一代无线通信系统中具有良好的应用前景。 相似文献