首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A finite element formulation is presented to study the non-linear buckling of arbitrary shallow elastic thin shells with general boundary conditions and subjected to conservative pressure loading. Pre and post buckling behaviour of a large number of shallow and semi deep doubly curved shells is studied in detail. Unsymmetrical bifurcation paths of a shallow spherical shell subjected to uniform inward pressure are also investigated.  相似文献   

2.
研究了完整、开口周边加强及开口加口盖3种型式的复合材料三分之一柱面壳的压缩屈曲性能,考查了3种典型复合材料柱面壳的轴压屈曲强度,分析了开口及口盖对柱面壳压缩稳定性的影响.结果表明:开口大大降低了柱面壳的轴压屈曲强度;口盖可以部分恢复其强度,但很难达到开口之前的水平.进行了开口加口盖经编织物铺层三分之一柱面壳轴向压缩试验,其轴压屈曲强度比用平面织物制造的相同结构的降低很多.为了探究其轴压屈曲强度比同类结构偏低很多的原因,进行了非均匀加载复合材料柱面壳模型有限元分析.结果表明:柱面壳边界不均匀加载会降低其承载能力,根据柱面壳刚度分布制定边界载荷可以提高其承载能力.  相似文献   

3.
Experimental studies on dynamic behavior of thin-walled spheres and sphere arrays in response to different impact velocity are presented. Ping pong balls are selected to study the collapse of thin-walled spheres. The tests were carried out by a modified Split Hopkinson Pressure Bar (SHPB) test system. The experimental results show that the deformation of thin-walled spherical shells depends on the impact velocity. The dynamic force in the range of small elastic deformation is larger than its quasi-static counterpart, but significantly below the latter after snap-through of the shell. The deformation and buckling mode are sensitive to the loading rate. It is noted that the strain rate effect of the materials and the inertia effect of the shell should be considered in the analysis of the shells response to dynamic loading.  相似文献   

4.
基于经典壳理论和von Karman几何非线性理论,导出了功能梯度圆底扁球壳的位移型几何非线性控制方程及简支边界条件,推导过程考虑了均匀变温场及均布外侧压力。用打靶法计算了由控制方程和边界条件提出的两点边值问题,得到了壳体轴对称变形的数值结果。考察了壳体几何参数、材料横向梯度特性、组份材料体积分数指数和弹性模量以及均匀变温场对壳体屈曲平衡路径、上/下临界荷载和平衡构形的影响。数值结果表明:随组分材料体积分数指数的增加和弹性模量的减小,壳体上临界荷载均会显著减小;体积分数指数对壳体下临界荷载影响规律较复杂;均匀升温使壳体上/下临界荷载显著增加/减小。材料横向梯度特性对简支边功能梯度圆底扁球壳屈曲平衡路径和后屈曲稳态构形有显著影响。该文末给出了便于工程设计的两个数表和一些数值曲线。  相似文献   

5.
A postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to axial compression in thermal environments. Two kinds of carbon nanotube-reinforced composite (CNTRC) shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of axially-loaded, perfect and imperfect, FG-CNTRC cylindrical shells under different sets of thermal environmental conditions. The results for UD-CNTRC shell, which is a special case in the present study, are compared with those of the FG-CNTRC shell. The results show that the linear functionally graded reinforcements can increase the buckling load as well as postbuckling strength of the shell under axial compression. The results reveal that the CNT volume fraction has a significant effect on the buckling load and postbuckling behavior of CNTRC shells.  相似文献   

6.
Hygrothermal stresses due to the change in environmental condition may induce buckling and dynamic instability in the composite shell structures. In the present investigation, the hygrothermoelastic buckling behavior of laminated composite shells are numerically simulated using geometrically nonlinear finite element method. The orthogonal curvilinear coordinate is used for modeling a general doubly curved deep or shallow shell surface. The geometrically nonlinear finite element formulation is based on general nonlinear strain–displacement relations in the orthogonal curvilinear coordinate system. The present theory can be applicable to thin and moderately thick shells. The mechanical linear and nonlinear stiffnesses, and the nonmechanical nonlinear geometric stiffness matrices and the hygrothermal load vector are presented. It is also observed that during the present numerical solution of nonlinear equilibrium equation, in order to construct the nonlinear stiffness matrices for the first load step, the initial deformation can be assumed as zero or any computer generated small random number or the properly scaled fundamental buckling mode shape. To verify the present formulations and finite element code, the present results are compared well with those available in the open literature. Parametric studies such as thickness ratio and shallowness ratio on buckling are performed for spherical, truncated conical and cylindrical composite shell panels. The buckling behavior and deflection shapes are characterized by multiple wrinkles along unreinforced direction at higher moisture concentrations or temperature rise.  相似文献   

7.
对Schwedler单层球面网壳结构进行了强震作用下的动力全过程分析,研究了结构的失效机理。对40m跨的Schwedler理想网壳结构和考虑初始缺陷的网壳结构进行了全过程动力时程分析,考查了此类型网壳结构的动力性能和破坏形式,采用一致缺陷模态法处理初始缺陷,分析了初始缺陷对Schwedler网壳结构动力性能的影响;对具有初始缺陷的网壳结构进行了参数影响分析,分别考查了地震作用、杆件截面和屋面荷载三种因素对结构动力性能的影响;将研究结果与其它球面网壳结构进行了比较,验证了文献[6]提出的理论框架的合理性和实用性。  相似文献   

8.
Thermal postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to a uniform temperature rise. The SWCNTs are assumed to be aligned and straight with a uniform layout. Two kinds of carbon nanotube-reinforced composite (CNTRC) shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. Based on the multi-scale approach, numerical illustrations are carried out for perfect and imperfect, FG- and UD-CNTRC shells under different values of the nanotube volume fractions. The results show that the buckling temperature as well as thermal postbuckling strength of the shell can be increased as a result of a functionally graded reinforcement. It is found that in most cases the CNTRC shell with intermediate nanotube volume fraction does not have intermediate buckling temperature and initial thermal postbuckling strength.  相似文献   

9.
An experimental program for collapse of curved stiffened composite shell structures encountered a wide range of initial and deep buckling mode shapes. This paper presents work to determine the significance of the buckling deformations for determining the final collapse loads and to understand the source of the variation. A finite element analysis is applied to predict growth of damage that causes the disbonding of stiffeners and defines a load displacement curve to final collapse. The variability in material properties and geometry is then investigated to identify a range of buckling modes and development of deep postbuckling deformation encountered in the experimental program. Finally the load paths for the damaged panels are used to visualise the load transfer and enhance the physical understanding of the load displacement history.  相似文献   

10.
In this paper, buckling behaviors of composite cylindrical shells made from functionally graded materials (FGMs) subjected to pure bending load were investigated. The material properties were assumed to be graded along the thickness. The non-uniform bending force on the shell section was considered in the buckling government equation of FGM cylindrical shells based on the Donnell shallow shell theory. The prebuckling deformation of the FGM cylindrical shells was neglected and the buckling mode was assumed to occur non-uniformly in local district along the shell circumferential direction. The eigenvalue method was used to obtain the buckling critical condition. The theoretical results were in excellent agreement with those of ABAQUS code. Results show that the inhomogenity of the materials is significant for buckling of FGM cylindrical shells.  相似文献   

11.
复合材料柱面壳压缩性能分析   总被引:3,自引:0,他引:3  
对三分之一复合材料柱面壳进行压缩性能试验研究与理论分析, 试验得到柱面壳的破坏方式为屈曲破坏。利用有限元法对其建模分析和静强度分析, 得到的静强度远大于屈曲强度, 因此柱壳应该首先发生屈曲破坏, 这与试验结果相符; 且理论计算所得的屈曲强度与试验结果相符, 说明该模型可以用来分析整个复合材料柱壳的压缩破坏行为, 研究结果可为柱壳的结构设计提供参考。对比某一载荷下理论模型与实际模型上对应点的应变, 发现二者结果相符, 证明有限元建模有效。然后分别对理论模型进行屈曲分析。   相似文献   

12.
This paper presents an analytical approach to investigate the nonlinear static and dynamic unsymmetrical responses of functionally graded shallow spherical shells under external pressure incorporating the effects of temperature. Governing equations for thin FGM spherical shells are derived by using the classical shell theory taking into account von Karman–Donnell geometrical nonlinearity. Approximate solutions are assumed and Galerkin procedure is applied to determine explicit expressions of static critical buckling loads of the shells. For the dynamical response, motion equations are numerically solved by using Runge–Kutta method and the criterion suggested by Budiansky–Roth. A detailed analysis is carried out to show the effects of material and geometrical parameters, boundary conditions and temperature on the stability and dynamical characteristics of FGM shallow spherical shells.  相似文献   

13.
《Composites Part B》2001,32(2):89-101
The paper is concerned with the structural response of a composite shell structure intended as a model of an under-water vehicle for service in sea environment. The main objective of the research is the prediction of the collapse pressure using both analytical expressions and linear or non-linear numerical analysis and the following comparison with the experimental pressure obtained in off-shore tests. The structure is composed of three basic parts with regular geometry: a cylindrical part (with the following geometrical properties: R/t=30.5, L/R=2 being the internal radius 305 mm, the length 610 mm and the thickness 10 mm) and two conical and spherical end-closures with the same thickness. The cylindrical shell was made up of 7 plies of E-glass woven roving with polyester resin. Various structural analyses were conducted before performing the experiment in the sea to verify the reliability of the analytical and numerical tools. Firstly the entire model was analysed to predict the nature of the collapse (material failure or elastic buckling) and it was stated that the collapse was due to elastic buckling of the cylindrical part. Consequently, the attention was focused on this component and approximation formulae for the evaluation of the linear buckling pressure of isotropic and composite cylindrical shells were used together with finite element models. Afterward the study was enlarged to consider the effects of the recorded geometric imperfections into a non-linear buckling analysis. The collapse pressures were compared to the design values derived from the available recommendations and to the experimental result obtained in an off-shore test (1.3 MPa).  相似文献   

14.
A postbuckling analysis is presented for a functionally graded cylindrical shell with piezoelectric actuators subjected to lateral or hydrostatic pressure combined with electric loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling is extended to the case of FGM hybrid laminated cylindrical shells of finite length. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of pressure-loaded, perfect and imperfect, FGM cylindrical shells with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The results reveal that temperature dependency, temperature change and volume fraction distribution have a significant effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells. In contrast, the control voltage only has a very small effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells.  相似文献   

15.
采用基于复合材料一阶剪切理论的有限元法研究了含多分层损伤的先进复合材料格栅加筋(AGS)板壳结构的热-机耦合屈曲性态,在屈曲分析中考虑了材料热物理、力学性质与温度相关特性和分层损伤处的上子板、下子板的接触效应。同时在分层前缘采用了位移约束条件以保证分层区域的各子板的变形相容要求。通过一含多分层损伤的典型复合材料格栅(AGS)圆柱壳结构算例分析,讨论了在热-机耦合作用下分层大小、个数和分层位置对该结构屈曲性态的影响。结果表明:复合材料格栅(AGS)圆柱壳结构具有较强的抗热屈曲的能力和良好的损伤容限性。该文提出的方法和所得结论将对AGS结构的热-机耦合屈曲能力的预测和损伤容限设计具有一定参考价值。  相似文献   

16.
Abstract

The paper deals with the nonlinear buckling analysis of imperfect cylindrical shells made of porous metal foam subjected to axial compression. For the metal foam shells, porosities are dispersed by uniform, symmetric, and asymmetric distributions in the thickness direction. Using Donnell shell theory and von-Karman nonlinear kinematics, nonlinear equilibrium equations are derived. The critical buckling load and buckling equilibrium curves for both perfect and imperfect shells are solved by using the Galerkin's procedure. A comprehensive investigation into the influence of porosity coefficient, imperfections, porosity distribution, and geometry on the buckling behaviors of the cylindrical shell is performed.  相似文献   

17.
Summary Internal instability of structured materials and elements is occasionally observed and has been verified by experiments. The specific problems in this contribution treated analytically and numerically consist of internal instability phenomena of prestressed elastic materials and the so-called membrane buckling of thin elastic plates and shells. A stability theory taking into consideration independent local rotations is outlined; this theory is then used to treat the membrane buckling of cylindrical shells and the in-plane buckling of rectangular plates. It is shown that under certain circumstances, the in-plane buckling mode may precede the out-of-plane buckling deformation. To simulate the internal stability phenomena numerically, a number of discrete models of structured materials are considered; based on these models numerical Finite Element (FE) buckling analyses are carried out, including linear analyses for the membrane buckling of a circular cylindrical shell model and the in-plane buckling analysis of a flat plate. The FE simulations effectively afford buckling loads and buckling modes.  相似文献   

18.
刘文政  叶继红 《工程力学》2014,31(9):152-159,181
基于杆系结构构形易损性理论,以构形度标准差最小为目标函数,以构件截面尺寸为优化变量,并考虑长细比、挠度、杆件强度及稳定约束条件,建立了单层球壳结构构形度优化模型。将遗传算法和模拟退火算法作为子算法,基于混合策略构造出遗传-模拟退火算法(GASA),并采用自适应策略降低算法对优化参数的依赖性。以跨度70m的单层球壳结构为例,通过凝聚过程分析识别结构存在的构形度不均匀区域。采用GASA算法对该区域的杆件截面进行构形度优化。通过对优化后结构凝聚过程分析和地震动力时程分析,表明优化模型和优化算法可以有效的解决优化变量繁多的大型单层球壳结构地震作用下倒塌模式的优化问题。  相似文献   

19.
A thermal buckling analysis is presented for laminated cylindrical shells with surface mounted piezoelectric actuators under combined action of thermal and electrical loads. Derivations of the equations are based on the classical laminated shell theory, using the Sanders nonlinear kinematic relations. The analysis uses the Galerkin method to obtain closed form solutions for the buckling loads of shallow and nonshallow piezolaminated cylindrical shells. Temperature dependency of material properties is taken into account. Illustrative examples are presented to verify the accuracy of the proposed formulation. The effects of the various design parameters on thermal buckling loads are investigated.  相似文献   

20.
轴向冲击荷载作用下薄壁圆柱壳屈曲变形研究一直受人们关注,探讨其动态响应的特征和机理,不仅可以丰富冲击屈曲研究内容,而且为提高结构的抗冲击能力提供理论基础。众多实验现象表明,圆柱壳在轴向冲击荷载作用下非对称屈曲时截面为规则几何形状,且不只三角形一种模式,也不是随机现象,而具有一定规律性。文章对环向截面屈曲耗能计算进行理论推导,通过分析对比屈曲耗能与折叠边数、圆柱壳半径的关系,根据最小耗能原理,证实变形规律存在,并分析得到,随半径增加圆柱壳非对称屈曲由三角形模式向多边形模式发展,最终有转变为轴对称变形模式的可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号