首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structures of copolymers of styrene and divinylbenzene (50% crosslinking degree) prepared in suspension polymerization in the presence of mixtures of nonsol (heptane or decane) and sol (toluene or tetralin) diluents were investigated. The studies showed that the diluents enriched with nonsol solvents resulted in an increase of pore volumes and posities for the prepared copolymers. The sol diluents affected mainly the gel regions of the polymer matrices. Isotropic swelling of the matrices prepared in the presence of toluene is the opposite of the effect observed for tetralin family copolymers. The virtual difference of both kind of matrices was demonstrated in the sorption of phenol. The tetralin family copolymers were characterized by a prolonged time for column breakthrough. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The swelling capacity of porous styrene–divinylbenzene (DVB) copolymers in water was studied by displacing methanol from the swollen polymer. The copolymers with different amounts of DVB were prepared in the presence of solvents with different solvating powers as inert diluents. Using a solvating solvent or its mixture with a nonsolvent as diluent, most of the obtained copolymers increase their volume in water, and the increase in volume becomes more significant with increasing the degree of crosslinking in some range of the DVB contents. The swelling capacity in water for the same copolymers with a high degree of crosslinking is linearly dependent on the dilution degree in the initial reaction mixture, to some extent. The unusual swelling behaviors in water were explained by the inner strain, which existed mainly in the less crosslinked domains between the highly crosslinked microgel particles, which are released in the course of swelling of the copolymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 536–544, 2000  相似文献   

3.
A method for the determination of composition and content of pendent double bonds in untreated samples of styrene–ethylene dimethacrylate and styrene–divinylbenzene copolymers from Raman spectra has been developed. By computer treatment of spectra it was shown that Raman spectra are sensitive to the distribution of components in the studied copolymers.  相似文献   

4.
Small spherical particles of styrene–divinylbenzene copolymers have been synthesized by modified suspension polymerization. The effects of divinylbenzene (DVB) contents, dilution degree of the monomers and diluent composition on the porous structure and swelling properties of the copolymers were investigated. Toluene uptakes of macroporous copolymers were considered as a result of three contributions: filling of the fixed pores, expansion of the fixed or collapsed pores, and nuclei swelling and heptane uptakes as a result of the two first contributions. The increase of DVB content in the copolymers synthesized in presence of a solvating diluent (toluene) provoked a decrease on the nuclei swelling. The increase of dilution degree with solvating diluents changed the toluene and heptane uptakes, and when the diluent–copolymer affinity was reduced, the fixed pore volume increased. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1257–1262, 1997  相似文献   

5.
The pore structure of styrene–divinylbenzene (DVB) copolymers formed by phase separation before or after gelation was compared using apparent densities and mercury porosimetry. The copolymers were prepared with di-2-ethylhexyl phthalate (DOP) as diluent. The pore structure of copolymers formed in homogeneous gelation can collapse upon drying in the rubbery state. The collapsed pores have a mean diameter of about 100–200 Å corresponding to the interstices between the microspheres. The collapsed microspheres reexpand again during the sulfonation or chloromethylation reactions, or during the solvent exchange. The pore structure of styrene–DVB networks formed in heterogeneous gelation do not collapse on drying in the swollen state, this being a stable and permanent porosity. The critical crosslink density for transition from homogeneous to the heterogeneous gelation represents a borderline between stable and unstable porosity. The drastical change of swelling and porosity values at the critical crosslink density is due to the collapse of unstable pores.  相似文献   

6.
The stress–stain and ultimate behavior in compression of homogeneous and macroporous beads of styrene–divinylbenzene copolymers has been investigated in the dry state or in equilibrium with toluene, acetone, methanol, and water. The penetration modulus A indicates sensitively the transition from the glassy into the rubbery state induced by an increase in temperature or swelling. For macroporous copolymers, A of the glassy polymers is mainly determined by the porosity P, while in the rubbery region it primarily depends on the matrix structure (degree of crosslinking and concentration and composition of the diluent). The high value of the slope s of the A vs. P dependence (s ~ ?3) for macroporous copolymers is evidence of the complex deformation mechanism (bucking of pore walls). The relative compression at break, εb=0.3–0.4, is independent of the composition, and the compressive strength is roughly proportional to the penetration modulus.  相似文献   

7.
The collapse of pores in styrene–divinylbenzene copolymers and corresponding ion-exchange resins was studied during the removal of solvating liquids. The process can be followed in a most simple way by measuring the volume of the bead-shaped copolymers upon drying. Other parameters observed during drying were the apparent density and incidently the internal surface. The collapse of pores is considered to be a result of cohesional forces when solvated polymer chains are approaching each other by loss of solvent. The effect will thus be more pronounced in gel-type networks than in porous ones. In porous networks, the effect will be stronger in smaller pores than in larger ones. It is shown that crosslinks, increasing the rigidity of the structures, will favor the conservation of porosity. In ion-exchange resins the pore stability is best when the material is in its lowest state of hydration. Generally, the collapse of pores is a reversible process. The collapsed material can in most cases be reswollen by the proper choice of solvent.  相似文献   

8.
The change in the porosity of styrene–divinylbenzene (S–DVB) copolymers during drying as a function of the quality of the diluent and of the divinylbenzene (DVB) concentration was investigated after drying the networks from water (maximum porosity) and from toluene (stable porosity). Two different diluents, namely toluene and cyclohexanol, were used in the polymerization system at a fixed volume fraction of the organic phase (0.50). The phase separation in toluene is accompanied by a slight deswelling of the network phase, whereas that in cyclohexanol leads to largely unswollen network phase. The stable porosity increases abruptly over a narrow range of the DVB concentration, i.e., between 40 and 50% DVB in toluene and between 15 and 25% DVE in cyclohexanol. The maximum porosity increases almost linearly with increasing DVB concentration up to a certain value, and then remains constant. The results indicate that the two main factors which determine the physical state of the swollen heterogeneous S–DVB copolymers, as well as the stability of the porous structures, are (1) the critical conversion at the incipient phase separation and (2) the degree of the inhomogeneity in crosslink distribution.  相似文献   

9.
The formation of the porosity and the pore stability in maleic anhydride–styrene–divinylbenzene (MAn–St–DVB) copolymer beads were investigated using the apparent density measurements of the samples dried from methanol (maximum porosity) and from dioxane (stable porosity). The copolymer beads were prepared by the suspension polymerization method in glycerol instead of water as the dispersing medium. A toluene–dioxane (1:1) mixture was used as the diluent at a fixed volume fraction of the organic phase (0.47). Compared to St–DVB copolymers prepared in the presence of nonsolvating diluents, porous MAn–St–DVB copolymers are obtained at relatively low DVB concentration, i.e., at 1–3% DVB. The porosity of the copolymers increases with decreasing MAn concentration in the feed due to the decrease in the copolymer yield. The results of the elemental analyses and titrimetric methods indicate that approximately only half of the MAn units in the copolymer are able to react with amine or with water. A possible rearrangement of the MAn units into the cyclopentanone structures was suggested.  相似文献   

10.
Polystyrene–divinylbenzene (PS–DVB) copolymer was modified by anchoring dipyridylamine (DPA) on it followed by complexation with Fe(III). Under the experimental conditions followed, 9% incorporation of Fe(III) was achieved. PS–DVB–DPA and PS–DVB–DPA–Fe(III) were characterized by IR spectra. Diffuse reflectance spectra for PS–DVB–DPA–Fe(III) and DPA–Fe(III) revealed λmax at ~ 360 and ~ 310, respectively. This difference could be due to a difference in the nature of the coordinating moieties complexing with Fe(III) in these two systems. Scanning electron micrographs of PS–DVB, PS–DVB–DPA–Fe(III), and heat-treated PS–DVB–DPA–Fe(III) revealed some typical surface features. Thermal stability varied in the order PS–DVB–DPA–Fe(III) > PS–DVB–DPA ?PS–DVB, and DTA showed characteristic exotherms. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
A new and efficient method for preparation of optically active poly(styrene–divinylbenzene) copolymers (PS-DVB) is presented here. This is carried out by Friedel–Crafts acylation reaction of chiral N-phthaloyl -leucine acid chloride with PS-DVB beads in the presence of aluminum chloride as Lewis acid catalyst and 1,2-dichloroethane as the solvent at ambient temperature. Reagents’ amounts and reaction conditions are mentioned and four samples with different amounts of functionality have been prepared. Final products were characterized by FT-IR and elemental analysis. The results obtained confirm that the above modification in preparation of chiral supported PS-DVB has been achieved well and in moderate yield.  相似文献   

12.
In the presence of anhydrous ferric chloride as a Friedel–Crafts catalyst, the postcrosslinking reaction of macroporous styrene–divinylbenzene (St–DVB) copolymers synthesized under different conditions was carried out with 1,2‐dichloroethane as a solvent. Without an externally added crosslinking agent, the specific surface area and pore volume, for copolymers with different DVB isomers or different DVB contents after reaction, in most cases increased significantly, and the increase was found to be heavily dependent upon the amount of the pendant vinyl groups in the starting copolymers. These results further confirm the role of the pendant vinyl groups in creating new crosslinking bonds in addition to those created by a free‐radical crosslinking reaction in the starting copolymers, and an alkylation reaction of the vinyl groups with neighboring aromatic rings is believed to dominate the course of the postcrosslinking at a relatively high level of the vinyl group contents. The synthesis conditions, including the n‐heptane content in a mixed diluent and the amount of the diluent, under which the starting copolymers were synthesized, play an important role in the increase of the surface area and pore volume of the copolymers after postcrosslinking. The effect of these conditions is attributed mainly to the swelling ability of the starting copolymers thus obtained in the solvent used for reaction. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1668–1677, 2002  相似文献   

13.
Phase separation by suspension copolymerization of styrene–divinylbenzene (DVB) with di-2-ethylhexyl phthalate (DOP) as diluent was investigated using equilibrium swelling, swelling rate, apparent densities, and mercury porosimetry. The copolymer prepared in the absence of DOP is heterogeneous, showing that a phase separation exists in the polymerization system, and, in the presence of DOP, the propagating copolymer separates earlier. Furthermore, with increasing amounts of DVB, phase separation occurs earlier than gelation, which causes a sudden increase in the amount of pores about 200–500 Å in diameter corresponding to the interstices between the microspheres.  相似文献   

14.
Experimental data are presented describing the formation of porosity in styrene–divinylbenzene copolymers as a function of the organic components present during the suspension polymerization. The reaction system contains a mixture of diluents such as toluene and hexane, which results in matrices that differ significantly in pore structure from the porous resins so far known. From these data a model of the physical structure is proposed.  相似文献   

15.
16.
A dual-calibration method for the determination of molecular weights and molecular weight distribution of styrene–maleic anhydride copolymers (S/MA) by gel permeation chromatography (GPC) is introduced. It might be applicable to copolymers of other type. A linear relationship of intrinsic viscosity [η] and weight-average molecular weight (M?w) for unfractionated S/MA in tetrahydrofuran (THF) at 25°C can be expressed by the equation The maleic anhydride content of the copolymers ranges from 5 to 50 mole-%, and the M?w range is from 2 × 104 to 7 × 106. The plot of log [η] M?w versus GPC elution volume of the S/MA copolymers falls on the same curve as that of the polystyrene standards in THF.  相似文献   

17.
A series of porous ethylvinylbenzene–divinylbenzene (EVB–DVB) copolymers with DVB contents ranging from 22.0 to 98.4% were prepared using various amounts of toluene as the inert diluent, and studies were made on the copolymers as to their swelling properties, the stability of their pore structure, and the relationship between swelling in nonsolvents and variations in their pore structure. The swelling experiments showed that the ethanol regains of the copolymers were closely related to the course of phase separation, and the increases in both the DVB content and the volume fraction of monomers in the organic phase resulted in enhanced capacity of the highly crosslinked copolymers to keep swelling in solvents having extremely small affinity for these copolymers. The variations in pore structure, sometimes quite considerable, for copolymers pretreated with different solvents were observed even at DVB content up to 98.4% and further studies showed that a consistent relationship existed between pore volume variation and volume swelling ratio in ethanol for toluene modified copolymers.  相似文献   

18.
The cut growth properties of styrene–butadiene block and random copolymers are considered in terms of the tearing energy theory. It is found that the value of T0 (the minimum value of tearing energy below which no cut growth takes place in the absence of chemical effects) is far higher for a styrene–butadiene resin copolymer system with a high amount of bound styrene resin than for a conventionally vulcanized SBR elastomer. Similarly, it is shown that the value of T0 for a butadiene–styrene block copolymer (thermoplastic rubber) is considerably reduced when the material is crosslinked. It is proposed that the value of T0 is influenced by the hystersial properties of the rubber.  相似文献   

19.
Styrene–maleic anhydride (SMA) copolymers containing either 7 or 14% maleic anhydride were filled with either pine flour or dry-process aspen fiber from a medium density fiberboard (MDF) plant. Material properties of the filled and unfilled SMA plastics were compared with those of aspen-fiber-filled and unfilled polystyrene (PS). The fiber-filled SMA composites were equivalent or superior to unfilled SMA in strength, stiffness, and notched Izod impact strength. Filled PS composites outperformed or matched the performance of filled SMA composites in the parameters tested. Unnotched Izod impact strength of filled polymers was generally inferior to that of the unfilled polymers. Water absorption from a 90% relative humidity exposure, a 24-h soak, and a 2-h boil showed mixed results when compared to the unfilled polymers. Dynamic mechanical analysis showed no change in glass transition temperature (Tg) after the addition of filler for either SMA or PS composites. The presence of the anhydride functionality on the polymer backbone did not appear to improve the strength of the composite. No evidence was found for chemical bond formation between the SMA and wood fiber. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1567–1573, 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号