首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testicular androgens are integral components of the hormonal feedback loops that regulate circulating levels of LHbeta and FSH. The sites of feedback include hypothalamic areas regulating GnRH neurons and pituitary gonadotropes. To better define the roles of androgen receptor (AR), estrogen receptor-alpha (ERalpha), and estrogen receptor-beta (ERbeta) in mediating feedback effects of sex steroids on reproductive neuroendocrine function, we have determined the effects of castration and steroid replacement therapy on hypothalamic GnRH content, pituitary LHbeta and FSHbeta messenger RNA (mRNA) levels, and serum gonadotropins in male wild-type (WT) and estrogen receptor-alpha knockout (ERKO) mice. Hypothalami from intact WT and ERKO males contained similar amounts of GnRH, whereas castration significantly reduced GnRH contents in both genotypes. Replacement therapy with estradiol (E2), testosterone (T), or dihydrotestosterone (DHT) restored hypothalamic GnRH content in castrated (CAST) WT mice; only the androgens were effective in CAST ERKOs. Analyses of pituitary function revealed that LHbeta mRNA and serum LHbeta levels in intact ERKOs were 2-fold higher than those in intact WT males. Castration increased levels of LHbeta mRNA (1.5- to 2-fold) and serum LHbeta (4- to 5-fold) in both genotypes. Both E2 and T treatments significantly suppressed LHbeta mRNA and serum LH levels in CAST WT males. However, E2 was completely ineffective, and T was only partially effective in suppressing these two indexes in the CAST ERKO males. DHT treatments stimulated a 50% increase in LHbeta mRNA and serum LH levels in WT males, whereas serum LH was significantly suppressed in DHT-treated ERKO males. Although the pituitaries from intact ERKO males contained similar amounts of FSHbeta mRNA, serum FSH levels were 20% higher than those in the intact WT males. Castration increased FSHbeta mRNA levels only in WT males, but significantly increased serum FSH levels in both genotypes. Both E2 and T treatments significantly suppressed serum FSH in CAST WT males, whereas only E2 suppressed FSHbeta mRNA. DHT treatments of CAST WT mice stimulated a small increase in serum FSH, but failed to alter FSHbeta mRNA levels. None of the steroid treatments exerted any significant effect on FSHbeta mRNA or serum FSH levels in CAST ERKOs. These data suggest that hypothalamic GnRH contents can be maintained solely through AR signaling pathways. However, normal regulation of gonadotrope function requires aromatization of T and activation of ERalpha signaling pathways in the gonadotrope. In addition, serum FSH levels in male ERKOs appear to be regulated largely by nonsteroidal testicular factors such as inhibin. Finally, these data suggest that hypothalamic ERbeta may not be involved in mediating the negative feedback effects of T on serum LH and FSH in male mice.  相似文献   

2.
Administration of 4 mg of the antisteroid RU486 over 8 consecutive days to adult male rats dissociated in vivo and in vitro gonadotrophin secretion, increasing FSH and decreasing LH secretion. In subsequent experiments we evaluated the involvement of testicular or adrenal secretory products, as well as hypothalamic LHRH, in the effects of 4 consecutive days of RU486 treatment on the secretion of gonadotrophins. The first day of RU486 injection was designated day 1, subsequent days being numbered consecutively. Groups of rats injected with oil (0.2 ml) or RU486 (4 mg) were: (i) injected s.c. from day 1 to day 4 with the antiandrogen flutamide (10 mg/kg); (ii) bilateral orchidectomized (ORCH) on day 1; and (iii) bilateral adrenalectomized (ADX) on day 1. Controls were given flutamide vehicle or were sham operated. To ascertain whether the secretion of LHRH is involved in the effects of RU486 on gonadotrophin secretion, we measured the LHRH secretion into the pituitary stalk blood vessels at 1100 h on day 5 in oil- or RU486-treated rats. Additional oil- and RU486-treated rats were injected i.p. with 100 ng LHRH at 1000 h on day 5, or s.c. with 1 mg LHRH antagonist (LHRH-ANT) at 1000 h on days 2 and 4. Controls were given saline. All animals were decapitated at 1100 h on day 5, trunk blood collected and serum stored frozen until FSH, LH and testosterone assays.%While ADX had no effect on FSH and LH secretion in either oil- or RU486-treated rats, the removal of androgen negative feedback with flutamide treatment or by ORCH substantially increased serum levels of FSH and LH in both oil- and RU486-treated rats, and thus annulled the effects of RU486. No differences in pituitary stalk plasma LHRH concentrations were found between oil- and RU486-treated rats. Injection of LHRH increased serum FSH and LH concentrations in oil-treated rats but only, and to a lesser extent, LH concentrations in RU486-treated rats. Treatment with LHRH-ANT decreased serum concentrations of FSH and LH in both oil- and RU486-treated rats. These results suggest that RU486 inhibited LHRH-stimulated LH secretion at the pituitary level, and that FSH secretion increased in response to a reduction in the negative feedback of androgen.  相似文献   

3.
Bilateral implants of atropine sulphate were placed in various loci in the brain or into the anterior pituitary in male rats and the effects of the implants on the postcastration rise in plasma FSH and LH was determined. The increase in both gonadotropins at 16 hr after castration still occurred in animals with implants in the cerebral cortex. The postcastration rise of both FSH and LH was blocked by atropine implants in the anterior, middle, or posterior hypothalamus but was not interfered with by control implants of cholesterol. Bilateral implants of either cholesterol or atropine into the anterior pituitary failed to alter the increase in plasma LH following castration but both types of implants interfered with the postcastration rise in FSH, possibly because of trauma to the pituitary from the cannulae. It is suggested that hypothalamic cholinergic synapses may play a role in stimulating the increased LHRH release which induces the postcastration rise in gonadotropins.  相似文献   

4.
Mammalian reproductive function is under control of the integrated hypothalamic-pituitary-gonadal (HPG) axis. Castration in male rats has been utilized as an effective tool to investigate hormonal interactions in the mammalian HPG axis. Recently, nitric oxide (NO) has been suggested to play a role in HPG hormonal regulation. In order to gain further insight into the function of the NO-NOS system in reproductive neuroendocrine control, particularly in the gonadal feedback regulation of the hypothalamic-pituitary unit, we examined steady state levels of nNOS mRNA, nNOS protein, and the important physiological index, NOS enzyme activity, of the intrinsic NOergic system in both hypothalamus and pituitary in castrated male rats and their sham-operated counterparts one week after surgery. In the pituitary, we found a significant four-fold increase in nNOS mRNA, p < 0.0003 compared to sham. Castration also resulted in a four-fold rise in pituitary nNOS protein, p < 0.02 compared to sham. Pituitary NOS enzyme activity was stimulated 2 fold, p < 0.003 after castration. In the hypothalamus, conversely, we observed no significant castration-modulated difference in either nNOS mRNA, nNOS protein or NOS enzyme activity. Thus, it appears that the hypothalamic NO-NOS system is either not required for hypothalamic adaptations to castration, although important in the release of LHRH under normal physiological conditions, or alternatively, the hypothalamus may become more sensitive to the effects of NO in the castrated state. In the pituitary, NO may attenuate the gonadotropin response to castration as a local balancing mediator.  相似文献   

5.
Gonadotropin secretion by the pituitary gland is under the control of luteinizing hormone-releasing hormone (LHRH) and the putative follicle stimulating hormone-releasing factor (FSHRF). Lamprey III LHRH is a potent FSHRF in the rat and seems to be resident in the FSH controlling area of the rat hypothalamus. It is an analog of mammalian LHRH and may be the long sought FSHRF. Gonadal steroids feedback at hypothalamic and pituitary levels to either inhibit or stimulate the release of LH and FSH, which is also affected by inhibin and activin secreted by the gonads. Important control is exercised by acetylcholine, norepinephrine (NE), dopamine, serotonin, melatonin, and glutamic acid (GA). Furthermore, LH and FSH also act at the hypothalamic level to alter secretion of gonadotropins. More recently, growth factors have been shown to have an important role. Many peptides act to inhibit or increase release of LH and the sign of their action is often reversed by estrogen. A number of cytokines act at the hypothalamic level to suppress acutely the release of LH but not FSH. NE, GA, and oxytocin stimulate LHRH release by activation of neural nitric oxide synthase (nNOS). The pathway is as follows: oxytocin and/or GA activate NE neurons in the medial basal hypothalamus (MBH) that activate NOergic neurons by alpha, (alpha 1) receptors. The NO released diffuses into LHRH terminals and induces LHRH release by activation of guanylate cyclase (GC) and cyclooxygenase. NO not only controls release of LHRH bound for the pituitary, but also that which induces mating by actions in the brain stem. An exciting recent development has been the discovery of the adipocyte hormone, leptin, a cytokine related to tumor necrosis factor (TNF) alpha. In the male rat, leptin exhibits a high potency to stimulate FSH and LH release from hemipituitaries incubated in vitro, and increases the release of LHRH from MBH explants. LHRH and leptin release LH by activation of NOS in the gonadotropes. The NO released activates GC that releases cyclic GMP, which induces LH release. Leptin induces LH release in conscious, ovariectomized estrogen-primed female rats, presumably by stimulating LHRH release. At the effective dose of estrogen to activate LH release, FSH release is inhibited. Leptin may play an important role in induction of puberty and control of LHRH release in the adult as well.  相似文献   

6.
Ethanol (EtOH) suppression of the hypothalamic-pituitary-gonadal (HPG) axis results in broad reproductive malfunction. In the HPG axis, the suppressive effects of EtOH are manifested by decreased serum testosterone, reduced testicular luteinizing hormone (LH) receptor numbers, lowered serum LH and pituitary beta-LH mRNA levels (in castrated animals), and impaired luteinizing hormone releasing hormone (LHRH) release from the hypothalamus. Increasing evidence has suggested that nitric oxide (NO) plays a role in regulation of the HPG axis. NO was shown to stimulate LHRH secretion from the hypothalamus and to have variable effects on LH release from the pituitary. At the gonadal level, NO is inhibitory to testosterone production. NO may directly inhibit some testicular steroidogenic enzymes. To investigate the effect of EtOH, NO, and their interaction on the male HPG axis, three NO synthase (NOS) inhibitors, N(G)-nitro-L-arginine methyl ester, N(G)-nitro-L-arginine, and 7-nitro indazole were used to study overall HPG function in the presence and absence of EtOH. Animals were given intraperitoneal injections of saline, EtOH, various NOS inhibitors, or EtOH, along with NOS inhibitors 2 hr before sacrifice. Serum testosterone and LH concentrations, pituitary beta-LH mRNA levels, hypothalamic LHRH mRNA levels, and LHRH content were determined. It was found that blocking NOS by these NOS inhibitors prevented EtOH-induced suppression of testosterone and, in some cases, serum LH. However, this was not accompanied by concurrent changes with NOS blockade on LHRH mRNA, hypothalamic pro-LHRH or LHRH content or pituitary LH beta mRNA levels. It appears that the protective effect of NOS blockade was largely, although not completely, due to a direct effect at the gonadal level.  相似文献   

7.
Gene expression in luteinizing hormone-releasing hormone (LHRH) neurons was analyzed during the periovulatory period to (1) characterize temporal patterns of LHRH gene expression and their relationship(s) to gonadotropin surges, and (2) determine if any such changes are uniform or dissimilar at different rostrocaudal levels of the basal forebrain. The number of neurons expressing mRNA for the decapeptide, and the relative degree of expression per cell were analyzed using in situ hybridization and quantitative image analysis. Rats were killed at 1800 hr on metestrus (Met), 0800 hr, 1200 hr, 1800 hr, and 2200 hr on proestrus (Pro), or 0200 hr, 0800 hr, and 1800 hr on estrus (E; n = 5-6 rats/group). All sections were processed for LHRH mRNA in a single in situ hybridization assay. Sections were atlas matched and divided into four rostrocaudal groups for analysis: vertical limb of the diagonal band of Broca (DBB), rostral preoptic area/organum vasculosum of the lamina terminalis (rPOA/OVLT), medial preoptic area (mPOA), and suprachiasmatic/anterior hypothalamic area (SCN/AHA). Plasma LH and FSH levels from all animals were analyzed by RIA. The labeling intensity per cell was similar among all time points at all four rostrocaudal levels. The number of cells expressing LHRH mRNA, however, varied as a function of time of death during the estrous cycle, and this temporal pattern varied among the four anatomical regions. At the level of the mPOA, the number of cells was highest at 1200 hr on Pro, and then declined and remained low throughout the morning of E. At the level of the rPOA/OVLT, the greatest number of LHRH neurons was noted later in Pro, at 1800 hr, dropping rapidly to lowest numbers at 2200 hr. No significant changes in LHRH cell number occurred at the DBB or SCN/AHA levels. At all anatomical levels, the secondary surge of FSH was unaccompanied by any change in the number of neurons expressing LHRH mRNA. These data demonstrate that (1) the number of detectable LHRH mRNA-expressing cells fluctuates during the periovulatory period and (2) peak numbers of LHRH-expressing cells are attained in the mPOA before the onset of the LH surge and before peak LHRH cell numbers are seen at more rostral levels. A model is proposed in which gene expression in this subpopulation of LHRH neurons may be activated by preovulatory estrogen secretion and acutely reduced following the proestrous surge of progesterone.  相似文献   

8.
Antagonizing diestrous progesterone actions in cyclic rats by s.c. injections of the antiprogesterone RU486 (2 mg twice a day from metestrus through proestrus) increased LH and decreased FSH basal serum concentrations. Ovariectomy at metestrus (0800 h) increased serum levels of both gonadotropins in controls and reversed the RU486-induced dissociation of basal gonadotropin secretion. RU486-dissociated gonadotropin secretion is also dependent upon LHRH, since treatment (s.c.) with 1 mg GnRH antagonist (ORG 30276) twice a day on metestrus and diestrus completely prevented both the RU486-induced increase in LH and the decrease in FSH serum concentrations. The LHRH content in the medial basal hypothalamus and median eminence increased on proestrous morning in RU486-treated rats. The LH pituitary response to an exogenous i.v. bolus of 25 ng LHRH (Peninsula 7201; Peninsula Laboratory, Inc., Merseyside, UK) at 1700 h on diestrus was enhanced in rats treated with RU486. No differences in pituitary FSH response were noted with respect to oil-injected rats. The pituitary content of both gonadotropins decreased in RU486-treated rats on proestrous morning. All these effects due to RU486 in cyclic rats were reversed by ovariectomy. Testosterone serum levels increased significantly from diestrus onward, and the estradiol concentration increased on proestrous morning in RU486-treated rats. Ovariectomy as well as LHRH antagonist treatment eliminated the effects of RU486 on ovarian steroid production. Moreover, antiestrogen tamoxifen treatment reversed RU486-dissociated gonadotropin secretion, while antiandrogen flutamide treatment had no effect. The results of this experiment have confirmed previous findings that RU486 treatment dissociates basal gonadotropin secretion in cyclic rats. In addition, the present results show that: (1) this effect of RU486 is not due to a direct effect of this compound or to the blockade of progesterone action at a central level; (2) the effect of RU486 on pituitary gonadotropin secretion depends on ovarian substances other than progesterone and LHRH, since it is reversed by ovariectomy and completely abolished by LHRH antagonist treatment; (3) the reduction in FSH serum levels in rats treated with RU486 seems to be exerted by inhibin and estradiol at the pituitary level by reducing FSH synthesis and secretion; and (4) the hypersecretion of LH in rats treated with RU486, as compared to that resulting from ovariectomy, seems to be the consequence of, first, a lack of progesterone inhibitory action on LH secretion, and, second, an inappropriate feedback system involving increased hypothalamic LHRH activity and pituitary sensitivity to LHRH of moderately high levels of estradiol in the presence of abnormally high levels of testosterone.  相似文献   

9.
Accumulating evidence suggests that hypothalamic luteinizing hormone-releasing hormone (LHRH) and thyrotropin-releasing hormone (TRH) are two hypophysiotropic factors which modulate the immune response. The aim of the present study was to determine the in vivo effects of an intravenous bolus of LHRH and TRH on plasma interferon (IFN)-gamma production in five normoprolactinemic women with irregular menstrual cycles. We also determined prolactin (PRL), thyrotropin (TSH), follicle stimulating hormone (FSH), and luteinizing hormone (LH) levels before and after intravenous administration of LHRH and TRH. The results demonstrate that intravenous bolus of LHRH/TRH increases plasma IFN-gamma levels, with the maximum response 45 min after in vivo administration of hypothalamic peptides and after peak levels of adenohypophyseal hormones (PRL: 15 min; TSH: 30 min; FSH: 30 min; LH: 30 min). In order to investigate a possible direct action of hypothalamic hormones on immune cells, we also evaluated, in the same subjects, the influence of LHRH and TRH on IFN-gamma production by human peripheral blood mononuclear cells (PBMCs), collected before the intravenous administration of the peptides and stimulated in vitro with bacterial superantigen staphylococcal enterotoxin A (SEA) and concanavalin A (Con A). LHRH and TRH, separately and together, significantly enhanced in vitro IFN-gamma production by SEA- and ConA-activated PBMCs. The present results suggest that hypothalamic peptides (LHRH and TRH) directly, and/or indirectly pituitary hormones (PRL, TSH, FSH, and LH) or IL-2, have stimulatory effect on IFN-gamma producing cells and are further evidence of interactions between the neuroendocrine and immune systems.  相似文献   

10.
In the male rat, testosterone has been shown to regulate gonadotrophin synthesis and secretion under experimental conditions such as castration or gonadotrophin-releasing hormone (GnRH) antagonist with or without testosterone. The present study aims at clarifying the effects of non-steroidal antiandrogens, Casodex and flutamide, and ethane dimethane sulphonate (EDS) on the regulation of gonadotropin synthesis and secretion. To enable a direct comparison within this study to expected effects of testosterone, a GnRH antagonist-treated group and a castrated group were included. The gene expression of the subunits was correlated with changes in the pituitary and plasma content of immunoreactive luteinizing hormone (LH) and follicle-stimulating hormone (FSH), free subunits and pituitary content of in vitro bioactive LH and FSH. Groups of ten male rats each received the following treatments for 7 days: (1) vehicle; (2) castration; (3) EDS (75 mg/kg); (4) GnRH antagonist (Cetrorelix 250 micrograms/kg/day), (5) Casodex (20 mg/kg/day) or (6) flutamide (20 mg/kg/day). The effectiveness of testosterone deprivation was demonstrated by the reduction of weight in androgen-dependent organs such as epididymides and seminal vesicles in the treated groups. Treatment with flutamide, EDS or castration significantly increased (p < 0.05) serum levels of LH, FSH and alpha-subunit, whereas serum gonadotrophin levels were decreased in the GnRH antagonist-treated group. alpha-Subunit mRNA levels were elevated in the castrated, EDS and flutamide group and LH-beta mRNA levels were increased in the castrated and EDS group. FSH-beta mRNA levels were increased in the castrated group and decreased in the GnRH antagonist group, but remained unchanged in the flutamide and EDS group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A 21 -year-old man with Prader-Willi syndrome (PWS) was hospitalized due to hyperglycemia. After diet therapy and transient insulin administration, his blood glucose levels improved. Based on the fact that his urinary C-peptide levels increased, the diabetes mellitus may have been due to insulin resistance with obesity. In addition, his testes had become atrophied. Testosterone levels remained low even after human chorionic gonadotropin (HCG) administration. Luteinizing hormone (LH) levels were also low after LH releasing hormone (LHRH) administration. The LH response increased slightly after daily LHRH administration, indicating hypothalamic hypogonadism. Follicle stimulating hormone (FSH) levels were, however, high and increased after LHRH administration. The selective FSH elevation may have been due to the accompanying idiopathic oligospermia.  相似文献   

12.
Compelling evidence shows that the episodic and cyclic secretion of hypothalamic luteinizing hormone releasing hormone (LHRH), the primary stimulator of pituitary LH release, is subject to regulation by neuropeptide Y (NPY). We have reported earlier that sequential treatment of ovariectomized (ovx) rats with estrogen and progesterone to stimulate a preovulatory-type LH surge elevated the levels of both NPY and preproNPY mRNA levels in the hypothalamus concomitant with dynamic changes in LHRH activity. The present study was designed to determine whether these elevations in NPY content and gene expression represent new synthesis of NPY that is crucial to elicit LHRH discharge. Ovx, steroid-primed rats received intracerebroventricular injections of an unmodified 20-mer oligodeoxynucleotide (oligo) complementary to the NPY mRNA sequence. Control rats were injected similarly with either saline or the sense or missense oligos. Results showed that control rats displayed a characteristic surge-type elevation in plasma LH levels that was not affected by the administration of missense or sense oligos. However, in rats injected with the antisense oligo, the steroid-induced LH surge was completely blocked. In an additional experiment, NPY peptide levels were measured in microdissected hypothalamic sites following the injection of antisense or missense oligos. NPY antisense oligo administration blocked the significant increases in NPY levels in the median eminence-arcuate area, the medial preoptic area and lateral preoptic area seen in control rats. These results suggest that sequential ovarian steroid treatment augments NPY synthesis in the hypothalamus and this newly synthesized NPY is critical for induction of the LHRH and LH surge.  相似文献   

13.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are hypothalamic peptides sharing considerable sequence homology which are postulated to be hypophysiotrophic releasing factors. When infused into man, PACAP has no effect on anterior pituitary hormone levels, while VIP causes a significant increase in circulating prolactin concentrations. However, PACAP has recently been shown to augment the release of LH and FSH in response to LHRH in rat anterior pituitary cell culture. In order to ascertain if either peptide has a similar effect in man, PACAP and VIP were infused at 3.6 pmol/kg per min into six healthy male volunteers, and an LHRH test was performed 30 min after the infusion was commenced. Infusion of PACAP did not alter the gonadotrophin response to LHRH significantly. However, VIP augmented the release of LH significantly, both during the infusion and for 30 min thereafter, although there was no effect on FSH release. Thus VIP, but not PACAP, potentiates the release of LH after LHRH injection in man.  相似文献   

14.
Young cats, when chronically infected with feline leukemia virus (FeLV), developed feline acquired immune deficiency syndrome (FAIDS). The syndrome was associated with a sequence of dysfunctions in the hypothalamic-pituitary-gonadal (HPG) and the immune system, manifested in the reduction of luteinizing hormone-releasing hormone (LHRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone in blood plasma. The average FSH and LH (in plasma or lymphocyte), testosterone, and LHRH concentrations in the 20 FeLV-infected cats were measured by radioimmunoassay. The results were compared with those of the 12 control cats that were not FeLV-infected. Four weeks after infection, the plasma LHRH concentration in the infected cats showed a 43% reduction. Five to six weeks after infection, the content of FSH and LH in lymphocyte was reduced by 50% and 28%, respectively, whereas, the plasma FSH and LH was reduced by 52% and 42%, respectively. A significant reduction in testosterone content was detected at Week 11 of infection. The onset of the immuno- and neuroendocrine dysfunctions in FAIDs cats followed this sequence: hypothalamus, lymphocyte, pituitary, adrenal gland, and gonads. Indirect immunofluorescence assay showed the presence of FeLV cytoplasmic antigens in the fibers of the hypothalamic preoptic region and the Leydig cells. The possible causal relationship between the dysfunction of the lymphocyte and HPG systems and the presence of FeLV was discussed.  相似文献   

15.
In these studies we examined the temporal effects of intracerebroventricular (i.c.v.) infusions of norepinephrine (NE) on plasma LH and on LHRH mRNA levels in the organum vasculosum of the lamina terminalis (OVLT) and in neurons located in the rostral (r), middle (m) and caudal (c) preoptic areas (POA) of ovariectomized, estrogen-treated rats. Thereafter, we compared these responses to those which occur in androgen-sterilized rats (ASR). NE infusions not only increased plasma LH concentrations but within 1 h after NE, LHRH mRNA levels also were increased significantly in the OVLT and rPOA but not in the mPOA or cPOA. By 4 h, these message levels still were elevated in the OVLT and rPOA and they now also were significantly higher than control values in the mPOA and cPOA. While NE also increased LH secretion in ASR, the plasma LH concentrations obtained were markedly blunted compared to control values. Moreover, NE infusions did not alter single cell levels of LHRH mRNA in any region of the rostral hypothalamus. Previously, we have reported that morphine (s.c.) markedly amplifies NE-induced LH release and questioned whether these responses are accompanied by concomitant augmented increases in LHRH mRNA levels. Morphine alone did not affect basal LHRH mRNA or plasma LH levels. However, when rats were pretreated with morphine (-15 min) and NE was infused i.c.v. at 0 time, significant amplification of LH release occurred but, unexpectedly, morphine completely blocked NE-induced increases in LHRH mRNA levels in all of the neurons we examined. Morphine also amplified LH release in ASR but these responses were significantly less than those obtained in control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
cAMP regulation of gonadotropin secretion and subunit mRNA levels was studied in pituitary cells perifused with pulses of GnRH. Pituitary cells from 7-week-old male rats castrated at 5 weeks of age were stimulated hourly for 9-24 h with 1-min pulses of GnRH, the adenylate cyclase activator forskolin, the cell-permeable cAMP analog 8-bromo-cAMP (8Br-cAMP), or control medium. Cells were also treated with the nonsteroidal antiinflammatory drug flufenamic acid, which reduces pituitary cAMP levels. During perifusion, the effluent was collected in 10-min fractions for FSH and LH assay. At the completion of perifusion, total RNA was extracted, and gonadotropin subunit mRNA levels were quantitated by Northern analysis. Continuous administration of flufenamic acid gradually reduced the amplitude of GnRH-stimulated FSH and LH pulses to nadir values of 40 +/- 4.7% and 62 +/- 12% of the control value, respectively. Flufenamic acid decreased (P < 0.05) FSH beta and alpha-subunit mRNA levels and blocked the effect of GnRH to lengthen LH beta mRNA. Pulses of forskolin or 8Br-cAMP released LH and FSH, and continuous forskolin or 8Br-cAMP potentiated the gonadotropin stimulatory effect of GnRH. Forskolin or 8Br-cAMP increased (P < 0.05) FSH beta mRNA and alpha-subunit mRNA levels when administered in pulses, but not when administered continuously, and lengthened LH beta mRNA. The Nal-Glu GnRH antagonist blocked the effects of GnRH pulses, but not the effects of 8Br-cAMP or forskolin. In conclusion, lowering intracellular cAMP levels with flufenamic acid attenuated GnRH-stimulated gonadotropin secretion, decreased alpha-subunit and FSH beta mRNA levels, and blocked the effect of GnRH to lengthen LH beta mRNA, whereas 8Br-cAMP or forskolin produced the opposite effect. These data extend previous results which suggested that cAMP modulates gonadotropin secretion and indicate that the cAMP/A-kinase pathway regulates each of the gonadotropin subunit mRNAs.  相似文献   

17.
Luteinizing hormone releasing hormone (LHRH) stimulates the development of cellular FSH immunoreactivity in the perinatal hamster adenohypophysis. Because neuropeptide Y (NPY) can act directly on rat adenohypophysial cells to stimulate FSH and LH release and potentiate the stimulatory effect of LHRH on FSH and LH release, we investigated the effects of NPY alone and in combination with a low, ineffective dose of LHRH on inducing cellular FSH immunoreactivity in the neonatal hamster adenohypophysis. Neonatal female pituitary glands were grafted beneath the right renal capsules of hypophysectomized-ovariectomized adult hamster hosts with a catheter implanted in the external jugular vein. After treatment, hosts were decapitated and graft tissue was stained for FSH and LH immunoreactivity. The mean percentage of adenohypophysial cells that stained for FSH was low (2.8%) in grafts in hosts infused continuously with heparinized saline vehicle for 7 days. In other hosts, peptides were pulsed through the catheter every 12 h for 7 days. The mean percentage of FSH cells also was low after pulsing 6 ng LHRH or 2 micrograms NPY but increased substantially when the two peptides were pulsed simultaneously. No differences in the mean percentage of LH cells existed between any of the groups. The results demonstrate that NPY and LHRH can synergize to induce cellular FSH immunoreactivity in the neonatal female hamster.  相似文献   

18.
LHRH mRNA levels were examined in young and middle-aged female rats at 4 times (10:00 h, 14:00 h, 18:00 h and 20:00 h) on the day of a steroid-induced LH surge by in situ hybridization with a digoxigenin-labeled riboprobe. Young, but not middle-aged females, exhibited dynamic temporal changes in the number of LHRH mRNA positive neurons detected in the organum vasculosum of the lamina terminalis-preoptic area (OVLT-POA) continuum. Specifically, fewer LHRH mRNA positive neurons were detected at 18:00 h compared with the number detected at 14:00 h and 20:00 h (P < 0.01) in the OVLT-POA of young females. All LHRH mRNA positive neurons present in 4 anatomically matched sections through the rostral POA of young and middle-aged animals were digitized for detailed computer-assisted analysis of the hybridization reaction product. The mean hybridization area (P < 0.00025) and integrated optical density per cell (P < 0.006) were reduced in middle-aged compared to young females consistent with a relative age-related decline in LHRH mRNA levels. Moreover, an age-related reduction in cellular and/or regional hybridization area was noted at each of the time points examined (P < 0.05-P < 0.001). These data confirm earlier reports of dynamic changes in LHRH mRNA levels on the day of an LH surge. Furthermore, they support a role for age-related alterations in LHRH gene expression in the disruption of regular estrous cyclicity in middle-aged females.  相似文献   

19.
In post-partum lactating rats, sucking by the young was associated with high prolactin release and maintenance of lactation but severe inhibition of LH and FSH release and suspension of oestrous cycles. Shortly after the pups were removed on day 22 post partum LH and FSH release returned to normal and oestrous cycles resumed. Twice-daily injections of ergocornine methanesulphonate (ERG) into mothers beginning at 5 or 7 days post partum, resulted in sustained inhibition of prolactin release and diminished mild secretion. By frequent exchange of pups between control and ERG-treated mothers, it was possible to maintain vigorous sucking and almost normal pup growth despite low serum prolactin levels and diminished lactation. In these rats, serum levels of LH remained low during 11 or more days of treatment with ERG, but serum FSH was consistently higher than in untreated control mothers. After 11 or more days of ERG treatment, most rats showed a return to normal LH and FSH release and resumption of oestrous cycles. These results suggest (a) that the sucking stimulus rather than high prolactin levels in the circulation is mainly responsible for inhibition of LH and FSH release during the first 11 days post partum, (b) that the sucking stimulus acts to increase prolactin and inhibit LH release by separate hypothalamic mechanisms, and (c) that administration of ERG results in diminished prolactin release and lactation, and in increased release of FSH and subsequently of LH with earlier resumption of oestrous cycles.  相似文献   

20.
Median eminence catecholamines were measured in individual samples from intact, castrated, or sham-operated male rats, in order to correlate changes in catecholamine content with the early post-castration rise in serum LH levels. Both norepinephrine (NE) and dopamine (DA) were measured by an enzymatic-isotopic assay and advantage was also taken of a method recently developed that makes it possible to obtain the median eminence free of the surrounding hypothalamus. Determinations were made at 4, 8, or 24 h after surgery. All animals were killed between 1400 and 1600 h. It was observed that castration increases the ME content of NE significantly at all the times studied, with peak values 8 h after orchidectomy. Sham operation induced a significant decrease in NE content in the ME 4 h after surgery. By 8 h the NE values had returned to intact control levels. Both castration and sham operation induced a significant decrease in DA levels 4 h after surgery. By 8 h, DA values had returned to intact control levels in both groups. When the NE levels in castrated rats had reached the highest value, serum LH values had not departed from control levels, indicating that the change in NE content in the ME takes place prior to the expected rise in LH. Testosterone replacement therapy (40 mug/100 gBW) of castrated rats blocked the increase in NE content observed 8 h after castration. Dopamine levels were not affected by this treatment. These results support the concept that the NE contained in median eminence catecholaminergic terminals participates in the feed-back regulation of LH secretion in the male rat, while DA is apparently not involved under the present conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号