首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glucose transporter protein syndrome (GTPS) is caused by defective transport of glucose across the blood-brain barrier via the glucose transporter GLUT1, resulting in hypoglycorrhachia, infantile seizures, and developmental delay. Recent reports indicated that GLUT1 is a multifunctional transporter. We investigated the transport of vitamin C in its oxidized form (dehydroascorbic acid) via GLUT1 into erythrocytes of 2 patients with GTPS. In both patients, uptake of oxidized vitamin C was 61% of the mothers' values. Our findings are consistent with recent observations that vitamin C is transported in its oxidized form via GLUT1. We speculate that impaired transport of this substrate and perhaps other substrates in GTPS might contribute to the pathophysiology of this condition.  相似文献   

2.
Despite L-glutamine being the most abundant amino acid in CSF, the mechanisms of its transport at the choroid plexus have not been fully elucidated. This study examines the role of L-, A-, ASC-, and N-system amino acid transporters in L-[14C]glutamine uptake into isolated rat choroid plexus. In the absence of competing amino acids, approximately half the glutamine uptake was via a Na(+)-dependent mechanism. The Na(+)-independent uptake was inhibited by 2-amino-2-norbornane carboxylic acid, indicating that it is probably via an L-system transporter. Na(+)-dependent uptake was inhibited neither by the A-system substrate alpha-(methylamino)isobutyric acid nor by the ASC-system substrate cysteine. It was inhibited by histidine, asparagine, and L-glutamate gamma-hydroxamate, three N-system substrates. Replacement of Na+ with Li+ had little effect on uptake, another feature of N-system amino acid transport. These data therefore indicate that N-system amino acid transport is present at the choroid plexus. The Vmax and Km for glutamine transport by this system were 8.1 +/- 0.3 nmol/mg/min and 3.3 +/- 0.4 mM, respectively. This system may play an important role in the control of CSF glutamine, particularly when the CSF glutamine level is elevated as in hepatic encephalopathy.  相似文献   

3.
Ascorbate (vitamin C) recycling occurs when extracellular ascorbate is oxidized, transported as dehydroascorbic acid, and reduced intracellularly to ascorbate. We investigated microorganism induction of ascorbate recycling in human neutrophils and in microorganisms themselves. Ascorbate recycling was determined by measuring intracellular ascorbate accumulation. Ascorbate recycling in neutrophils was induced by both Gram-positive and Gram-negative pathogenic bacteria, and the fungal pathogen Candida albicans. Induction of recycling resulted in as high as a 30-fold increase in intracellular ascorbate compared with neutrophils not exposed to microorganisms. Recycling occurred at physiologic concentrations of extracellular ascorbate within 20 min, occurred over a 100-fold range of effector/target ratios, and depended on oxidation of extracellular ascorbate to dehydroascorbic acid. Ascorbate recycling did not occur in bacteria nor in C. albicans. Ascorbate did not enter microorganisms, and dehydroascorbic acid entry was less than could be accounted for by diffusion. Because microorganism lysates reduced dehydroascorbic acid to ascorbate, ascorbate recycling was absent because of negligible entry of the substrate dehydroascorbic acid. Because ascorbate recycling occurs in human neutrophils but not in microorganisms, it may represent a eukaryotic defense mechanism against oxidants with possible clinical implications.  相似文献   

4.
Due to their ubiquitous occurrence in the plant kingdom, plant phenolics, including monomeric cinnamic acids, are ingested by man and animals in variable amounts with their natural diets. Recently, Na(+)-dependent saturable transport of cinnamic acid across the brush-border membrane of rat jejunum has been described. It was the aim of the present study to characterize this mechanism in more detail. We therefore determined the transport kinetics of mucosal uptake of radioactively labelled cinnamic acid under various conditions using a short-term mucosal uptake technique. In addition, the transfer of cinnamic acid across the jejunal wall was investigated using everted intestinal sacs. Investigations of the kinetics of cinnamic acid uptake by the mid-jejunal mucosa revealed the involvement of two transport components, a diffusive Na(+)-independent mechanism and a saturable Na(+)-dependent mechanism. The results obtained with everted sacs provided further evidence of the existence of an active Na+ gradient-driven transport of cinnamic acid across the intestinal epithelium. In the presence of Na+, a significant accumulation of cinnamate occurred inside the serosal compartment and this was strongly inhibited by serosal ouabain. A decrease in the extracellular pH stimulated mucosal cinnamate uptake by increasing the apparent affinity (1/km). This may be attributable to the involvement of a transmembrane H+ gradient in Na(+)-dependent cinnamate transport because the protonophore FCCP caused a significant reduction of cinnamate uptake only in the presence of Na+. The kinetics of cinnamate transport in the absence or presence of a surplus of either unlabelled cinnamate or unlabelled butyrate indicates a reduction in the apparent affinity of the Na(+)-dependent mechanism involved in cinnamate uptake. These results may be explained by a modification of the mechanism by the intracellular pH. Additionally, competitive inhibition of cinnamate uptake by substances structurally related to cinnamic acid may also be involved.  相似文献   

5.
6.
7.
The interaction of carnitine with human placental brush-border membrane vesicles was investigated. Carnitine was found to associate with the membrane vesicles in a Na(+)-dependent manner. The time course of this association did not exhibit an overshoot, which is typical of a Na+ gradient-driven transport process. The absolute requirement for Na+ was noticeable whether the association of carnitine with the vesicles was measured with a short time incubation or under equilibrium conditions, indicating Na(+)-dependent binding of carnitine to the human placental brush-border membranes. The binding was saturable and was of a high-affinity type with a dissociation constant of 1.37 +/- 0.03 microM. Anions had little or no influence on the binding process. The binding process was specific for carnitine and its acyl derivatives. Betaine also competed for the binding process, but other structurally related compounds did not. Kinetic analyses revealed that Na+ increased the affinity of the binding process for carnitine and the Na+/carnitine coupling ratio for the binding process was 1. The dissociation constant for the interaction of Na+ with the binding of carnitine was 24 +/- 4 mM. This constitutes the first report on the identification of Na(+)-dependent high-affinity carnitine binding in the plasma membrane of a mammalian cell. Studies with purified rat renal brush-border membrane vesicles demonstrated the presence of Na+ gradient-driven carnitine transport but no Na(+)-dependent carnitine binding in these membrane vesicles. In contrast, purified intestinal brush-border membrane vesicles posses neither Na+ gradient-driven carnitine transport nor Na(+)-dependent carnitine binding.  相似文献   

8.
The anatomical localization of the Na+/bile acid cotransport system from rabbit small intestine was determined using brush border membrane vesicles prepared from eight different segments of the small intestine. Na(+)-dependent transport activity for bile acids, both for [3H]taurocholate and [3H]cholate, was found in the distal segment 8 only representing the terminal 12% of the small intestine. In contrast, the Na(+)-dependent D-glucose transporter and the H(+)-dependent oligopeptide transporter were found over the whole length of rabbit small intestine in all segments. Photoaffinity labeling with 7,7-azo- and 3,3-azo-derivatives of taurocholate with subsequent fluorographic detection of labeled polypeptides after one- and two-dimensional gel electrophoresis showed that an integral membrane polypeptide of M(r) 87,000 is present in the entire small intestine, whereas an integral membrane protein of M(r) 93,000 together with a peripheral membrane protein of M(r) 14,000 are exclusively expressed in the distal small intestine correlating with Na(+)-dependent bile acid transport activity. Photoaffinity labeling with the cationic bile acid derivative 1-(7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta[3 beta-3H]cholan-24-oyl)-1,2- diaminoethane hydrochloride and 7,7-azo-3 alpha,12 beta-dihydroxy-5 beta[12 alpha-3H]cholan-24-oic acid did not result in a specific labeling of the above mentioned proteins, demonstrating their specificity for physiological bile acids. Photoaffinity labeling of the 93- and 14-kDa bile acid-binding proteins was strongly Na(+)-dependent. Significant labeling of the 93- and 14-kDa proteins occurred only in the presence of Na+ ions with maximal labeling above 100 mM [Na+] showing a parallel [Na+] dependence to transport activity. Inactivation of Na(+)-dependent [3H]taurocholate uptake by treatment of ileal brush border membrane vesicles with 4-nitrobenzo-2-oxa-1,3-diazol chloride led to a parallel decrease in the extent of photoaffinity labeling of both the 93- and 14-kDa protein. Sequence analysis of the membrane-bound 14-kDa bile acid-binding protein surprisingly revealed its identity with gastrotropin, a hydrophobic ligand-binding protein exclusively found in the cytosol from ileocytes and thought to be involved in the intracellular transport of bile acids from the brush border membrane to the basolateral pole of the ileocyte. In conclusion, the present studies suggest that both an integral 93- and a peripheral 14-kDa membrane protein, identified as gastrotropin, and both exclusively expressed in the terminal ileum, are essential components of the Na+/bile acid cotransport system in rabbit terminal ileum.  相似文献   

9.
Intestinal absorption of bile acids depends on a sodium-bile acid cotransport protein in the apical membrane of the ileal epithelial cell. Transport is Na+-dependent, but the Na+-bile acid stoichiometry and electrogenicity of transport are not known. Studies in whole intestine, isolated cells, and ileal membrane vesicles have been unable to resolve this issue because transport currents are small and can be obscured by other ionic conductances and transport proteins present in these membranes. In this study, the human apical sodium-bile acid transporter was expressed in stably transfected Chinese hamster ovary cells that lack other bile acid transporters. The Na+-dependent transport of a fluorescent bile acid analog, chenodeoxycholyl-Nepsilon-nitrobenzoxadiazol-lysine, was monitored by fluorescence microscopy in single, voltage-clamped cells. Bile acid movement was bidirectional and voltage-dependent with negative intracellular voltage-stimulating influx. A 3-fold reduction in extracellular Na+ produced a negative 52 mV shift of the flux-voltage relationship, consistent with a 2:1 Na+:bile acid coupling stoichiometry. No Na+- or voltage-dependent uptake was observed in nontransfected Chinese hamster ovary cells. These results indicate that the cotransport of bile acids and Na+ by human apical sodium-bile acid transporter is electrogenic and bidirectional and is best explained by a 2:1 Na+:bile acid coupling stoichiometry. These results suggest that membrane potential may regulate bile acid transport rates under physiological and pathophysiological conditions.  相似文献   

10.
Various ocular tissues have a higher concentration of taurine than plasma. This taurine concentration gradient across the cell membrane is maintained by a high-affinity taurine transporter. To understand the physiological role of the taurine transporter in the retina, we cloned a taurine transporter encoding cDNA from a mouse retinal library, determined its biochemical and pharmacological properties, and identified the specific cellular sites expressing the taurine transporter mRNA. The deduced protein sequence of the mouse retinal taurine transporter (mTAUT) revealed >93% sequence identity to the canine kidney, rat brain, mouse brain, and human placental taurine transporters. Our data suggest that the mTAUT and the mouse brain taurine transporter may be variants of one another. The mTAUT synthetic RNA induced Na+- and Cl(-)-dependent [3H]taurine transport activity in Xenopus laevis oocytes that saturated with an average Km of 13.2 microM for taurine. Unlike the previous studies, we determined the rate of taurine uptake as the external concentration of Cl- was varied, a single saturation process with an average apparent equilibrium constant (K(Cl-)) of 17.7 mM. In contrast, the rate of taurine uptake showed a sigmoidal dependence when the external concentration of Na+ was varied (apparent equilibrium constant, K(Na+) approximately 54.8 mM). Analyses of the Na+- and Cl(-)-concentration dependence data suggest that at least two Na+ and one Cl- are required to transport one taurine molecule via the taurine transporter. Varying the pH of the transport buffer also affected the rate of taurine uptake; the rate showed a minimum between pH 6.0 and 6.5 and a maximum between pH 7.5 and 8.0. The taurine transport was inhibited by various inhibitors tested with the following order of potency: hypotaurine > beta-alanine > L-diaminopropionic acid > guanidinoethane sulfonate > beta-guanidinopropionic acid > chloroquine > gamma-aminobutyric acid > 3-amino-1-propanesulfonic acid (homotaurine). Furthermore, the mTAUT activity was not inhibited by the inactive phorbol ester 4alpha-phorbol 12,13-didecanoate but was inhibited significantly by the active phorbol ester phorbol 12-myristate 13-acetate, which was both concentration and time dependent. The cellular sites expressing the taurine transporter mRNA in the mouse eye, as determined by in situ hybridization technique, showed low levels of expression in many of the ocular tissues, specifically the retina and the retinal pigment epithelium. Unexpectedly, the highest expression levels of taurine transporter mRNA were found instead in the ciliary body of the mouse eye.  相似文献   

11.
Maternal alcohol abuse during pregnancy can lead to abnormalities in fetal development, sometimes manifested as the fetal alcohol syndrome (FAS). Although intrauterine growth retardation is a hallmark of FAS, the pathophysiology is not fully understood. A contributing factor may be altered placental function. In this study, the effect of long-term exposure to ethanol on subsequent amino acid uptake by the cultured human placental trophoblasts was examined. Both Na(+)-dependent and Na(+)-independent pathways for AIB uptake were measured. As reported previously, insulin and IGF-1 enhanced Na(+)-dependent AIB uptake. Exposure to ethanol had no effect on basal (nonhormone treated) AIB uptake. However, 72-hr ethanol pretreatment of trophoblasts inhibited Na(+)-dependent AIB uptake under stimulation by insulin or IGF-1 in the absence of ethanol. Na(+)-independent uptake was not affected. Ethanol treatment had no effect on insulin or IGF-1 binding to cultured trophoblasts. These findings suggest that 72-hr ethanol treatment in cultured trophoblasts may affect postreceptor signal transduction in the insulin or IGF-1 pathways. Such changes have implications for the effect of ethanol on normal function of the human placenta, the major interface for maternal/fetal transfer of nutrients.  相似文献   

12.
Tricarballylic acid is a non-metabolizable rumen bacterial fermentation product of the naturally occurring tricarboxylic acid trans-aconitic acid. The aim of the present study was to investigate intestinal absorption of tricarballylate using brush-border membrane vesicles (BBMVs) isolated from the proximal jejunum of steers by a Ca2+ precipitation method with subsequent differential centrifugation. Transport of tricarballylate was investigated indirectly (influence of tricarballylate on the uptake of 14C-labelled citrate) as well as directly (uptake of 3H-labelled tricarballylate). Citrate as well as tricarballylate uptake (at a concentration of 0.05 mmol l-1) was strongly stimulated by an inwardly directed initial Na+ gradient. Furthermore, transport of both tricarboxylates under Na+ gradient conditions was clearly enhanced by lowering the extravesicular pH from 7.8 to 5.6. The imposition of an inwardly directed H+ gradient (pH(out)/pH(in) = 5.6/7.8) further enhanced the intravesicular accumulation of citrate as well as of tricarballylate compared with pH(out)/pH(in) = 5.6/5.6. Unequivocal evidence for a common transport site for tricarballylate and citrate was obtained from 'cis-inhibition' and 'trans-stimulation' of Na(+)-dependent citrate uptake by tricarballylate. In further experiments the influence of different substances on the uptake of 3H-labelled tricarballylate was evaluated. Unlabelled tricarballylate, citrate, succinate as well as trans- and cis-aconitate significantly inhibited the accumulation of 3H-labelled tricarballylate by BBMVs. Tricarballylate uptake as a function of the tricarballylate concentration revealed a Na(+)-dependent saturable component (apparent kinetic parameters: maximal transport capacity (Vmax) = 119 pmol (mg protein)-1 (3s)-1; affinity constant (Km) = 0.097 mmol l-1) and a Na(+)-independent diffusional component (diffusion constant: 169 nl (mg protein)-1 (3s)-1). It is concluded that tricarballylate and citrate are transported across the intestinal brush-border membrane by a common, Na(+)-dependent transport mechanism. The stimulatory influence of a low extravesicular pH most probably indicates that the protonated forms of tricarboxylates are better transported than the trivalent species.  相似文献   

13.
The potent anticancer drug cis-diamminedichloroplatinum (II) (CDDP) interferes early with electrolyte transport by the renal proximal tubule. To study the early effects of platinum coordination complexes on apical Na(+)-coupled transport systems, we examined the effect of increasing concentrations of CDDP, trans-diamminedichloroplatinum (II) (TDDP) and cis-diammine-1,1-cyclobutane-dicarboxylate platinum (II) (CBDCA) on Na(+)-coupled uptake of P(i), methyl-alpha-D-glucopyranoside (MGP) and L-alanine by rabbit proximal tubule cells in primary culture. At 17 microM CDDP and 540 microM CBDCA, 1) cell viability (lactate dehydrogenase release) and ATP content were unaffected, 2) Na(+)-K(+)-ATPase activity was reduced by 40%, 3) Na(+)-coupled uptake of MGP and P(i) was reduced, whereas 4) Na(+)-coupled uptake of alanine rose to twice the control value. Alterations of Na(+)-coupled uptake of P(i), MGP and alanine were due to changes in Km, with no significant change in Vmax. At 333 microM TDDP, Na(+)-dependent P(i) and MGP uptake decreased, whereas Na(+)-independent uptake increased markedly and was associated with a decline in cell viability and ATP content. We conclude that 1) the TDDP-induced decrease in Na+/P(i) and Na+/glucose cotransport was associated with reduced cell viability, 2) both CDDP and CBDCA had different effects on Na+/P(i), Na+/glucose and Na+/alanine cotransport, arguing against an alteration of the Na+ gradient due to reduced Na(+)-K(+)-ATPase activity and 3) CBDCA induced alterations of Na(+)-coupled uptake similar to those of CDDP at concentrations 20 to 30 times higher.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
This study was undertaken to assess the short-term effects of EGF on sodium and glucose uptake, glucose metabolism and Na+/K(+)-ATPase activity in isolated enterocytes of rats. Jejunal cells exposed to EGF had a significantly greater total uptake of sodium compared to controls after 6 min. Kinetic analysis of glucose transport across BBMV's demonstrated similar Km values but a significant increase of the Vmax in vesicles prepared from cells first exposed to EGF as compared to controls. EGF was also associated with a significant increase in glucose metabolism of jejunal enterocytes after 15 min. The activity of Na+/K(+)-ATPase increased in jejunal enterocytes exposed to EGF. The increase in Na+/K(+)-ATPase activity of the cells following EGF exposure was not accompanied by an increase in immunodetectable total or assembled Na+/K(+)-ATPase protein. EGF's effect on enzyme activity was abolished by removing NaCl from the incubation solution, and by preincubating the enterocytes with phlorizin prior to addition of EGF. Preincubation with amiloride did not inhibit the effect of EGF on Na+/K(+)-ATPase. The results confirm that EGF promotes uptake of both sodium and glucose by the jejunal mucosal cells, and suggest the effect of EGF on glucose and sodium is mediated through the brush-border membrane glucose-sodium transporter. The increase in Na+/K(+)-ATPase activity that occurs with EGF appears to be secondary to a rise in intracellular Na+ concentration. The short-term effects of EGF on glucose and sodium transport by the small intestine may have potential therapeutic implications.  相似文献   

15.
The Na(+)-bile acid cotransporters NTCP and ASBT are largely responsible for the Na(+)-dependent bile acid uptake in hepatocytes and intestinal epithelial cells, respectively. This review discusses the experimental methods available for demonstrating electrogenicity and examines the accumulating evidence that coupled transport by each of these bile acid transporters is electrogenic. The evidence includes measurements of transport-associated currents by patch clamp electrophysiological techniques, as well as direct measurement of fluorescent bile acid transport rates in whole cell patch clamped, voltage clamped cells. The results support a Na+:bile acid coupling stoichiometry of 2:1.  相似文献   

16.
Glutamine plays an important role in fetal nutrition. This study explored the transport of [3H]glutamine into apical and basal predominant membrane vesicles derived from rat and human placenta. Na+-dependent glutamine transport was present in both apical and basal predominant vesicles derived from 20- and, to a lesser degree, 14-day gestation rat placenta. Amino-acid transport systems A, ASC-like, B(o,+) (in apical membrane vesicles) and, perhaps, y+L were involved in Na+-dependent glutamine transport. Na+-dependent glutamine uptake into human placental microvillus and basolateral membrane vesicles also occurred via several distinct transport activities. Glutamine transport via system N was not detected in either rat or human placental preparations. Na+-dependent glutamine transport in the rat was more pronounced in basal as compared to apical membrane vesicles. Conversely, in the human preparations, activity was significantly higher in microvillus as compared to basolateral membrane vesicles. It is concluded that Na+-dependent glutamine transport occurs through a variety of transport agencies in both the rat and human placenta. Transport varies with ontogeny and between species.  相似文献   

17.
The question of whether there are causative or compensatory changes in placental transport physiology affecting fetal growth is considered. Reductions in uterine and umbilical blood flow in growth retardation will reduce maternofetal exchange of lipophilic solutes, such as O2 and CO2, but will not have a major effect on the transfer of hydrophilic solutes. These solutes are transferred across the placenta by paracellular diffusion, transporter protein-mediated transport and endocytosis-exocytosis. Neither paracellular diffusion nor endocytosis-exocytosis has been investigated in relation to fetal growth. The weight of evidence is that there is no change in the activity and expression of the syncytiotrophoblast GI UTI glucose transporter in fetal growth retardation. However, there is strong evidence that the activity of the system A amino acid transporter, per milligram of placental membrane protein, is altered in relation to fetal growth, but in a complex manner. There is also some weaker evidence that the activity of the Na(+)-H+ exchanger, per milligram of placental membrane protein, is directly related to birth-weight. There are no data for other solute transporters; a considerable amount of work still remains to be done in order to understand the relationship between placental function and fetal growth rate.  相似文献   

18.
Glutathione and its related enzymes are present in intestinal epithelium. Depletion or alteration of glutathione levels have been related to different physiological and pathological conditions. Glutathione also seems to be related to the regulation of some protein activities. The present study, by in vivo experiments, shows a specific relationship between D-glucose Na+-dependent active transporter activity in rat intestine brush-border membranes and reduced glutathione/oxidized glutathione ratio levels. Changes of the kinetic parameters show that an increase of this ratio is related to an increase of the affinity of glucose for its binding sites and a higher transport capacity of the transporter. Neither alteration in the activity of other substrate transport systems nor change in the specific activity of the key enzymes related to glutathione and glucose metabolism are found. These findings suggest the possibility that D-glucose transporter activity is modulated through the change in the redox status of glutathione.  相似文献   

19.
Recycling of ascorbic acid from its oxidized forms is required to maintain intracellular stores of the vitamin in most cells. Since the ubiquitous selenoenzyme thioredoxin reductase can recycle dehydroascorbic acid to ascorbate, we investigated the possibility that the enzyme can also reduce the one-electron-oxidized ascorbyl free radical to ascorbate. Purified rat liver thioredoxin reductase catalyzed the disappearance of NADPH in the presence of low micromolar concentrations of the ascorbyl free radical that were generated from ascorbate by ascorbate oxidase, and this effect was markedly stimulated by selenocystine. Dehydroascorbic acid is generated by dismutation of the ascorbyl free radical, and thioredoxin reductase can reduce dehydroascorbic acid to ascorbate. However, control studies showed that the amounts of dehydroascorbic acid generated under the assay conditions used were too low to account for the observed loss of NADPH. Electron paramagnetic resonance spectroscopy directly confirmed that the reductase decreased steady-state ascorbyl free radical concentrations, as expected if thioredoxin reductase reduces the ascorbyl free radical. Dialyzed cytosol from rat liver homogenates also catalyzed NADPH-dependent reduction of the ascorbyl free radical. Specificity for thioredoxin reductase was indicated by loss of activity in dialyzed cytosol prepared from livers of selenium-deficient rats, by inhibition with aurothioglucose at concentrations selective for thioredoxin reductase, and by stimulation with selenocystine. Microsomal fractions prepared from rat liver showed substantial NADH-dependent ascorbyl free radical reduction that was not sensitive to selenium depletion. These results suggest that thioredoxin reductase can function as a cytosolic ascorbyl free radical reductase that may complement cellular ascorbate recycling by membrane-bound NADH-dependent reductases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号