首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
In mobile edge computing (MEC), one of the important challenges is how much resources of which mobile edge server (MES) should be allocated to which user equipment (UE). The existing resource allocation schemes only consider CPU as the requested resource and assume utility for MESs as either a random variable or dependent on the requested CPU only. This paper presents a novel comprehensive utility function for resource allocation in MEC. The utility function considers the heterogeneous nature of applications that a UE offloads to MES. The proposed utility function considers all important parameters, including CPU, RAM, hard disk space, required time, and distance, to calculate a more realistic utility value for MESs. Moreover, we improve upon some general algorithms, used for resource allocation in MEC and cloud computing, by considering our proposed utility function. We name the improved versions of these resource allocation schemes as comprehensive resource allocation schemes. The UE requests are modeled to represent the amount of resources requested by the UE as well as the time for which the UE has requested these resources. The utility function depends upon the UE requests and the distance between UEs and MES, and serves as a realistic means of comparison between different types of UE requests. Choosing (or selecting) an optimal MES with the optimal amount of resources to be allocated to each UE request is a challenging task. We show that MES resource allocation is sub-optimal if CPU is the only resource considered. By taking into account the other resources, i.e., RAM, disk space, request time, and distance in the utility function, we demonstrate improvement in the resource allocation algorithms in terms of service rate, utility, and MES energy consumption.  相似文献   

2.
To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services, the mobile edge computing (MEC) has been drawing increased attention from both industry and academia recently. This paper focuses on mobile users’ computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy. Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown, we use the model-free reinforcement learning (RL) framework to formulate and tackle the computation offloading problem. Each mobile user learns through interactions with the environment and the estimate of its performance in the form of value function, then it chooses the overhead-aware optimal computation offloading action (local computing or edge computing) based on its state. The state spaces are high-dimensional in our work and value function is unrealistic to estimate. Consequently, we use deep reinforcement learning algorithm, which combines RL method Q-learning with the deep neural network (DNN) to approximate the value functions for complicated control applications, and the optimal policy will be obtained when the value function reaches convergence. Simulation results showed that the effectiveness of the proposed method in comparison with baseline methods in terms of total overheads of all mobile users.  相似文献   

3.
Mobile edge cloud networks can be used to offload computationally intensive tasks from Internet of Things (IoT) devices to nearby mobile edge servers, thereby lowering energy consumption and response time for ground mobile users or IoT devices. Integration of Unmanned Aerial Vehicles (UAVs) and the mobile edge computing (MEC) server will significantly benefit small, battery-powered, and energy-constrained devices in 5G and future wireless networks. We address the problem of maximising computation efficiency in U-MEC networks by optimising the user association and offloading indicator (OI), the computational capacity (CC), the power consumption, the time duration, and the optimal location planning simultaneously. It is possible to assign some heavy tasks to the UAV for faster processing and small ones to the mobile users (MUs) locally. This paper utilizes the k-means clustering algorithm, the interior point method, and the conjugate gradient method to iteratively solve the non-convex multi-objective resource allocation problem. According to simulation results, both local and offloading schemes give optimal solution.  相似文献   

4.
Mobile edge computing (MEC) provides effective cloud services and functionality at the edge device, to improve the quality of service (QoS) of end users by offloading the high computation tasks. Currently, the introduction of deep learning (DL) and hardware technologies paves a method in detecting the current traffic status, data offloading, and cyberattacks in MEC. This study introduces an artificial intelligence with metaheuristic based data offloading technique for Secure MEC (AIMDO-SMEC) systems. The proposed AIMDO-SMEC technique incorporates an effective traffic prediction module using Siamese Neural Networks (SNN) to determine the traffic status in the MEC system. Also, an adaptive sampling cross entropy (ASCE) technique is utilized for data offloading in MEC systems. Moreover, the modified salp swarm algorithm (MSSA) with extreme gradient boosting (XGBoost) technique was implemented to identification and classification of cyberattack that exist in the MEC systems. For examining the enhanced outcomes of the AIMDO-SMEC technique, a comprehensive experimental analysis is carried out and the results demonstrated the enhanced outcomes of the AIMDO-SMEC technique with the minimal completion time of tasks (CTT) of 0.680.  相似文献   

5.
The vehicular cloud computing is an emerging technology that changes vehicle communication and underlying traffic management applications. However, cloud computing has disadvantages such as high delay, low privacy and high communication cost, which can not meet the needs of real-time interactive information of Internet of vehicles. Ensuring security and privacy in Internet of Vehicles is also regarded as one of its most important challenges. Therefore, in order to ensure the user information security and improve the real-time of vehicle information interaction, this paper proposes an anonymous authentication scheme based on edge computing. In this scheme, the concept of edge computing is introduced into the Internet of vehicles, which makes full use of the redundant computing power and storage capacity of idle edge equipment. The edge vehicle nodes are determined by simple algorithm of defining distance and resources, and the improved RSA encryption algorithm is used to encrypt the user information. The improved RSA algorithm encrypts the user information by reencrypting the encryption parameters . Compared with the traditional RSA algorithm, it can resist more attacks, so it is used to ensure the security of user information. It can not only protect the privacy of vehicles, but also avoid anonymous abuse. Simulation results show that the proposed scheme has lower computational complexity and communication overhead than the traditional anonymous scheme.  相似文献   

6.
With the growing amounts of multi-micro grids, electric vehicles, smart home, smart cities connected to the Power Distribution Internet of Things (PD-IoT) system, greater computing resource and communication bandwidth are required for power distribution. It probably leads to extreme service delay and data congestion when a large number of data and business occur in emergence. This paper presents a service scheduling method based on edge computing to balance the business load of PD-IoT. The architecture, components and functional requirements of the PD-IoT with edge computing platform are proposed. Then, the structure of the service scheduling system is presented. Further, a novel load balancing strategy and ant colony algorithm are investigated in the service scheduling method. The validity of the method is evaluated by simulation tests. Results indicate that the mean load balancing ratio is reduced by 99.16% and the optimized offloading links can be acquired within 1.8 iterations. Computing load of the nodes in edge computing platform can be effectively balanced through the service scheduling.  相似文献   

7.
In the paper, we investigate the heterogeneous resource allocation scheme for virtual machines with slicing technology in the 5G/B5G edge computing environment. In general, the different slices for different task scenarios exist in the same edge layer synchronously. A lot of researches reveal that the virtual machines of different slices indicate strong heterogeneity with different reserved resource granularity. In the condition, the allocation process is a NP hard problem and difficult for the actual demand of the tasks in the strongly heterogeneous environment. Based on the slicing and container concept, we propose the resource allocation scheme named Two-Dimension allocation and correlation placement Scheme (TDACP). The scheme divides the resource allocation and management work into three stages in this paper: In the first stage, it designs reasonably strategy to allocate resources to different task slices according to demand. In the second stage, it establishes an equivalent relationship between the virtual machine reserved resource capacity and the Service-Level Agreement (SLA) of the virtual machine in different slices. In the third stage, it designs a placement optimization strategy to schedule the equivalent virtual machines in the physical servers. Thus, it is able to establish a virtual machine placement strategy with high resource utilization efficiency and low time cost. The simulation results indicate that the proposed scheme is able to suppress the problem of uneven resource allocation which is caused by the pure preemptive scheduling strategy. It adjusts the number of equivalent virtual machines based on the SLA range of system parameter, and reduces the SLA probability of physical servers effectively based on resource utilization time sampling series linear. The scheme is able to guarantee resource allocation and management work orderly and efficiently in the edge datacenter slices.  相似文献   

8.
In today’s world, smart phones offer various applications namely face detection, augmented-reality, image and video processing, video gaming and speech recognition. With the increasing demand for computing resources, these applications become more complicated. Cloud Computing (CC) environment provides access to unlimited resource pool with several features, including on demand self-service, elasticity, wide network access, resource pooling, low cost, and ease of use. Mobile Cloud Computing (MCC) aimed at overcoming drawbacks of smart phone devices. The task remains in combining CC technology to the mobile devices with improved battery life and therefore resulting in significant performance. For remote execution, recent studies suggested downloading all or part of mobile application from mobile device. On the other hand, in offloading process, mobile device energy consumption, Central Processing Unit (CPU) utilization, execution time, remaining battery life and amount of data transmission in network were related to one or more constraints by frameworks designed. To address the issues, a Heuristic and Bent Key Exchange (H-BKE) method can be considered by both ways to optimize energy consumption as well as to improve security during offloading. First, an energy efficient offloading model is designed using Reactive Heuristic Offloading algorithm where, the secondary users are allocated with the unused primary users’ spectrum. Next, a novel AES algorithm is designed that uses a Bent function and Rijndael variant with the advantage of large block size is hard to interpret and hence is said to ensure security while accessing primary users’ unused spectrum by the secondary user. Simulations are conducted for efficient offloading in mobile cloud and performance valuations are carried on the way to demonstrate that our projected technique is successful in terms of time consumption, energy consumption along with the security aspects covered during offloading in MCC.  相似文献   

9.
Edge computing attracts online service providers (SP) to offload services to edge computing micro datacenters that are close to end users. Such offloads reduce packet-loss rates, delays and delay jitter when responding to service requests. Simultaneously, edge computing resource providers (RP) are concerned with maximizing incomes by allocating limited resources to SPs. Most works on this topic make a simplified assumption that each SP has a fixed demand; however, in reality, SPs themselves may have multiple task-offloading alternatives. Thus, their demands could be flexibly changed, which could support finer-grained allocations and further improve the incomes for RPs. Here, we propose a novel resource bidding mechanism for the RP in which each SP bids resources based on the demand of a single task (task-based) rather than the whole service (service-based) and then the RP allocates resources to these tasks with following the resource constraints at edge servers and the sequential rule of task-offloading to guarantee the interest of SPs. We set the incomes of the RP as our optimization target and then formulate the resource allocation problem. Two typical greedy algorithms are adopted to solve this problem and analyze the performance differences using two different bidding methods. Comprehensive results show that our proposal optimizes resource utilization and improves the RP’s incomes when resources in the edge computing datacenter are limited.  相似文献   

10.
Internet of Vehicles (IoV) applications integrating with edge computing will significantly drive the growth of IoV. However, the contradiction between the high-speed mobility of vehicles, the delay sensitivity of corresponding IoV applications and the limited coverage and resource capacity of distributed edge servers will pose challenges to the service continuity and stability of IoV applications. IoV application migration is a promising solution that can be supported by application containerization, a technology forseamless cross-edge-server application migration without user perception. Therefore, this paper proposes the container-based IoV edge application migration mechanism, consisting of three parts. The first is the migration trigger determination algorithm for cross-border migration and service degradation migration, respectively, based on trajectory prediction and traffic awareness to improve the determination accuracy. The second is the migration target decision calculation model for minimizing the average migration time and maximizing the average service time to reduce migration times and improve the stability and adaptability of migration decisions. The third is the migration decision algorithm based on the improved artificial bee colony algorithm to avoid local optimal migration decisions. Simulation results show that the proposed migration mechanism can reduce migration times, reduce average migration time, improve average service time and enhance the stability and adaptability of IoV application services.  相似文献   

11.
In this paper, we have proposed a differential game model to optimally solve the resource allocation problems in the edge-computing based wireless networks. In the proposed model, a wireless network with one cloud-computing center (CC) and lots of edge services providers (ESPs) is investigated. In order to provide users with higher services quality, the ESPs in the proposed wireless network should lease the computing resources from the CC and the CC can allocate its idle cloud computing resource to the ESPs. We will try to optimally allocate the edge computing resources between the ESPs and CC using the differential game and feedback control. Based on the proposed model, the ESPs can choose the amount of computing resources from the CC using feedback control, which is affected by the unit price of computing resources controlled by the CC. In the simulation part, the optimal allocated resources for users’ services are obtained based on the Nash equilibrium of the proposed differential game. The effectiveness and correctness of the proposed scheme is also verified through the numerical simulations and results.  相似文献   

12.
With the continuous evolution of smart grid and global energy interconnection technology, amount of intelligent terminals have been connected to power grid, which can be used for providing resource services as edge nodes. Traditional cloud computing can be used to provide storage services and task computing services in the power grid, but it faces challenges such as resource bottlenecks, time delays, and limited network bandwidth resources. Edge computing is an effective supplement for cloud computing, because it can provide users with local computing services with lower latency. However, because the resources in a single edge node are limited, resource-intensive tasks need to be divided into many subtasks and then assigned to different edge nodes by resource cooperation. Making task scheduling more efficient is an important issue. In this paper, a two-layer resource management scheme is proposed based on the concept of edge computing. In addition, a new task scheduling algorithm named GA-EC(Genetic Algorithm for Edge Computing) is put forth, based on a genetic algorithm, that can dynamically schedule tasks according to different scheduling goals. The simulation shows that the proposed algorithm has a beneficial effect on energy consumption and load balancing, and reduces time delay.  相似文献   

13.
With the rapid development of the internet of things (IoT), electricity consumption data can be captured and recorded in the IoT cloud center. This provides a credible data source for enterprise credit scoring, which is one of the most vital elements during the financial decision-making process. Accordingly, this paper proposes to use deep learning to train an enterprise credit scoring model by inputting the electricity consumption data. Instead of predicting the credit rating, our method can generate an absolute credit score by a novel deep ranking model–ranking extreme gradient boosting net (rankXGB). To boost the performance, the rankXGB model combines several weak ranking models into a strong model. Due to the high computational cost and the vast amounts of data, we design an edge computing framework to reduce the latency of enterprise credit evaluation. Specially, we design a two-stage deep learning task architecture, including a cloud-based weak credit ranking and an edge-based credit score calculation. In the first stage, we send the electricity consumption data of the evaluated enterprise to the computing cloud server, where multiple weak-ranking networks are executed in parallel to produce multiple weak-ranking results. In the second stage, the edge device fuses multiple ranking results generated in the cloud server to produce a more reliable ranking result, which is used to calculate an absolute credit score by score normalization. The experiments demonstrate that our method can achieve accurate enterprise credit evaluation quickly.  相似文献   

14.
Internet of Things (IoT) technology is rapidly evolving, but there is no trusted platform to protect user privacy, protect information between different IoT domains, and promote edge processing. Therefore, we integrate the blockchain technology into constructing trusted IoT platforms. However, the application of blockchain in IoT is hampered by the challenges posed by heavy computing processes. To solve the problem, we put forward a blockchain framework based on mobile edge computing, in which the blockchain mining tasks can be offloaded to nearby nodes or the edge computing service providers and the encrypted hashes of blocks can be cached in the edge computing service providers. Moreover, we model the process of offloading and caching to ensure that both edge nodes and edge computing service providers obtain the maximum profit based on game theory and auction theory. Finally, the proposed mechanism is compared with the centralized mode, mode A (all the miners offload their tasks to the edge computing service providers), and mode B (all the miners offload their tasks to a group of neighbor devices). Simulation results show that under our mechanism, mining networks obtain more profits and consume less time on average.  相似文献   

15.
基于5G通信技术的电力物联网正在如火如荼地建设,随之产生的是用电信息采集、输变电状态监测以及精准负荷控制等新型电力物联网业务。为了满足这些业务对5G网络的超低时延和超高可靠性的需求,提出一种面向电力物联网URLLC(ultra reliable low latency communication)业务的智能网络切片管理方法。该方法综合运用5G切片和移动边缘计算(mobile edge computing,MEC)技术,建立电力业务传输和计算的时延、能耗以及可靠性模型,并通过DQN(deep Q network)算法对切片资源进行优化。仿真实验表明,所提出的智能网络切片管理方法的可靠性高于98%,且优于经典的基于坐标块下降方法和资源平均分配方法。  相似文献   

16.
The number of mobile devices accessing wireless networks is skyrocketing due to the rapid advancement of sensors and wireless communication technology. In the upcoming years, it is anticipated that mobile data traffic would rise even more. The development of a new cellular network paradigm is being driven by the Internet of Things, smart homes, and more sophisticated applications with greater data rates and latency requirements. Resources are being used up quickly due to the steady growth of smartphone devices and multimedia apps. Computation offloading to either several distant clouds or close mobile devices has consistently improved the performance of mobile devices. The computation latency can also be decreased by offloading computing duties to edge servers with a specific level of computing power. Device-to-device (D2D) collaboration can assist in processing small-scale activities that are time-sensitive in order to further reduce task delays. The task offloading performance is drastically reduced due to the variation of different performance capabilities of edge nodes. Therefore, this paper addressed this problem and proposed a new method for D2D communication. In this method, the time delay is reduced by enabling the edge nodes to exchange data samples. Simulation results show that the proposed algorithm has better performance than traditional algorithm.  相似文献   

17.
Resource allocation in auctions is a challenging problem for cloud computing. However, the resource allocation problem is NP-hard and cannot be solved in polynomial time. The existing studies mainly use approximate algorithms such as PTAS or heuristic algorithms to determine a feasible solution; however, these algorithms have the disadvantages of low computational efficiency or low allocate accuracy. In this paper, we use the classification of machine learning to model and analyze the multi-dimensional cloud resource allocation problem and propose two resource allocation prediction algorithms based on linear and logistic regressions. By learning a small-scale training set, the prediction model can guarantee that the social welfare, allocation accuracy, and resource utilization in the feasible solution are very close to those of the optimal allocation solution. The experimental results show that the proposed scheme has good effect on resource allocation in cloud computing.  相似文献   

18.
With the rapid development of artificial intelligence, face recognition systems are widely used in daily lives. Face recognition applications often need to process large amounts of image data. Maintaining the accuracy and low latency is critical to face recognition systems. After analyzing the two-tier architecture “client-cloud” face recognition systems, it is found that these systems have high latency and network congestion when massive recognition requirements are needed to be responded, and it is very inconvenient and inefficient to deploy and manage relevant applications on the edge of the network. This paper proposes a flexible and efficient edge computing accelerated architecture. By offloading part of the computing tasks to the edge server closer to the data source, edge computing resources are used for image preprocessing to reduce the number of images to be transmitted, thus reducing the network transmission overhead. Moreover, the application code does not need to be rewritten and can be easily migrated to the edge server. We evaluate our schemes based on the open source Azure IoT Edge, and the experimental results show that the three-tier architecture “Client-Edge-Cloud” face recognition system outperforms the state-of-art face recognition systems in reducing the average response time.  相似文献   

19.
Human activity recognition is commonly used in several Internet of Things applications to recognize different contexts and respond to them. Deep learning has gained momentum for identifying activities through sensors, smartphones or even surveillance cameras. However, it is often difficult to train deep learning models on constrained IoT devices. The focus of this paper is to propose an alternative model by constructing a Deep Learning-based Human Activity Recognition framework for edge computing, which we call DL-HAR. The goal of this framework is to exploit the capabilities of cloud computing to train a deep learning model and deploy it on lesspowerful edge devices for recognition. The idea is to conduct the training of the model in the Cloud and distribute it to the edge nodes. We demonstrate how the DL-HAR can perform human activity recognition at the edge while improving efficiency and accuracy. In order to evaluate the proposed framework, we conducted a comprehensive set of experiments to validate the applicability of DL-HAR. Experimental results on the benchmark dataset show a significant increase in performance compared with the state-of-the-art models.  相似文献   

20.
In the IoT (Internet of Things) system, the introduction of UAV (Unmanned Aerial Vehicle) as a new data collection platform can solve the problem that IoT devices are unable to transmit data over long distances due to the limitation of their battery energy. However, the unreasonable distribution of UAVs will still lead to the problem of the high total energy consumption of the system. In this work, to deal with the problem, a deployment model of a mobile edge computing (MEC) system based on multi-UAV is proposed. The goal of the model is to minimize the energy consumption of the system in the process of data transmission by optimizing the deployment of UAVs. The DEVIPSK (differential evolution algorithm with variable population size based on a mutation strategy pool initialized by K-Means) is proposed to solve the model. In DEVIPSK, the population is initialized by K-Means to obtain better initial positions of UAVs. Besides, considering the limitation of the fixed mutation strategy in the traditional evolutionary algorithm, a mutation strategy pool is used to update the positions of UAVs. The experimental results show the superiority of the DEVIPSK and provide guidance for the deployment of UAVs in the field of edge data collection in the IoT system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号