首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Public cloud computing provides a variety of services to consumers via high-speed internet. The consumer can access these services anytime and anywhere on a balanced service cost. Many traditional authentication protocols are proposed to secure public cloud computing. However, the rapid development of high-speed internet and organizations’ race to develop quantum computers is a nightmare for existing authentication schemes. These traditional authentication protocols are based on factorization or discrete logarithm problems. As a result, traditional authentication protocols are vulnerable in the quantum computing era. Therefore, in this article, we have proposed an authentication protocol based on the lattice technique for public cloud computing to resist quantum attacks and prevent all known traditional security attacks. The proposed lattice-based authentication protocol is provably secure under the Real-Or-Random (ROR) model. At the same time, the result obtained during the experiments proved that our protocol is lightweight compared to the existing lattice-based authentication protocols, as listed in the performance analysis section. The comparative analysis shows that the protocol is suitable for practical implementation in a quantum-based environment.  相似文献   

2.
Quantum authorization management (QAM) is the quantum scheme for privilege management infrastructure (PMI) problem. Privilege management (authorization management) includes authentication and authorization. Authentication is to verify a user’s identity. Authorization is the process of verifying that a authenticated user has the authority to perform a operation, which is more fine-grained. In most classical schemes, the authority management center (AMC) manages the resources permissions for all network nodes within the jurisdiction. However, the existence of AMC may be the weakest link of the whole scheme. In this paper, a protocol for QAM without AMC is proposed based on entanglement swapping. In this protocol, Bob (the owner of resources) authenticates the legality of Alice (the user) and then shares the right key for the resources with Alice. Compared with the other existed QAM protocols, this protocol not only implements authentication, but also authorizes the user permissions to access certain resources or carry out certain actions. The authority division is extended to fin-grained rights division. The security is analyzed from the four aspects: the outsider’s attack, the user’s attack, authentication and comparison with the other two QAM protocols.  相似文献   

3.
Multi-factor authentication (MFA) was proposed by Pointcheval et al. [Pointcheval and Zimmer (2008)] to improve the security of single-factor (and two-factor) authentication. As the backbone of multi-factor authentication, biometric data are widely observed. Especially, how to keep the privacy of biometric at the password database without impairing efficiency is still an open question. Using the vulnerability of encryption (or hash) algorithms, the attacker can still launch offline brute-force attacks on encrypted (or hashed) biometric data. To address the potential risk of biometric disclosure at the password database, in this paper, we propose a novel efficient and secure MFA key exchange (later denoted as MFAKE) protocol leveraging the Pythia PRF service and password-to-random (or PTR) protocol. Armed with the PTR protocol, a master password pwd can be translated by the user into independent pseudorandom passwords (or rwd) for each user account with the help of device (e.g., smart phone). Meanwhile, using the Pythia PRF service, the password database can avoid leakage of the local user’s password and biometric data. This is the first paper to achieve the password and biometric harden service simultaneously using the PTR protocol and Pythia PRF.  相似文献   

4.
Given the accelerating development of Internet of things (IoT), a secure and robust authentication mechanism is urgently required as a critical architectural component. The IoT has improved the quality of everyday life for numerous people in many ways. Owing to the predominantly wireless nature of the IoT, connected devices are more vulnerable to security threats compared to wired networks. User authentication is thus of utmost importance in terms of security on the IoT. Several authentication protocols have been proposed in recent years, but most prior schemes do not provide sufficient security for these wireless networks. To overcome the limitations of previous schemes, we propose an efficient and lightweight authentication scheme called the Cogent Biometric-Based Authentication Scheme (COBBAS). The proposed scheme is based on biometric data, and uses lightweight operations to enhance the efficiency of the network in terms of time, storage, and battery consumption. A formal security analysis of COBBAS using Burrows–Abadi–Needham logic proves that the proposed protocol provides secure mutual authentication. Formal security verification using the Automated Validation of Internet Security Protocols and Applications tool shows that the proposed protocol is safe against man-in-the-middle and replay attacks. Informal security analysis further shows that COBBAS protects wireless sensor networks against several security attacks such as password guessing, impersonation, stolen verifier attacks, denial-of-service attacks, and errors in biometric recognition. This protocol also provides user anonymity, confidentiality, integrity, and biometric recovery in acceptable time with reasonable computational cost.  相似文献   

5.
Multi-server authenticated key agreement schemes have attracted great attention to both academia and industry in recent years. However, traditional authenticated key agreement schemes in the single-server environment are not suitable for the multi-server environment because the user has to register on each server when he/she wishes to log in various servers for different service. Moreover, it is unreasonable to consider all servers are trusted since the server in a multi-server environment may be a semi-trusted party. In order to overcome these difficulties, we designed a secure threefactor multi-server authenticated key agreement protocol based on elliptic curve cryptography, which needs the user to register only once at the registration center in order to access all semi-trusted servers. The proposed scheme can not only against various known attacks but also provides high computational efficiency. Besides, we have proved our scheme fulfills mutual authentication by using the authentication test method.  相似文献   

6.
The Global System for Mobile communication (GSM) network is proposed to mitigate the security problems and vulnerabilities observed in the mobile telecommunication system. However, the GSM network is vulnerable to different kinds of attacks such as redirection attack, impersonation attack and Man in-the Middle (MiTM) attack. The possibility of these attacks makes the wireless mobile system vulnerable to fraudulent access and eavesdropping. Different authentication protocols of GSM were proposed to overcome the drawbacks but many of them lead to network signalling overload and increases the call set-up time. In this paper, an efficient and secure authentication and key agreement protocol (ESAP-AKA) is proposed to overcome the flaws of existing authentication protocol for roaming users in the GSM network. The formal verification of the proposed protocol is presented by BAN logic and the security analysis is shown using the AVISPA tool. The security analysis shows that the proposed protocol avoids the different possible attacks on the communication network. The performance analysis based on the fluid flow mobility model shows that the proposed protocol reduces the communication overhead of the network by reducing a number of messages. On an average, the protocol reduces 60% of network signalling congestion overhead as compared with other existing GSM-AKA protocols. Moreover, the protocol not only removes the drawbacks of existing protocols but also accomplishes the needs of roaming users.  相似文献   

7.
Cisco公司于2004年提出基于隧道的灵活认证协议(EAP-FAST)以替代存在安全漏洞的LEAP认证协议,该协议具有安全性和易部署性的特点。文章论述了基于8021x协议的EAP-FAST认证协议及其实现技术,并在公共无线局域网(PWLAN)综合实验平台上实现了EAP-FAST认证的客户端、认证者、认证服务器端功能。  相似文献   

8.
Tele-medical information system provides an efficient and convenient way to connect patients at home with medical personnel in clinical centers. In this system, service providers consider user authentication as a critical requirement. To address this crucial requirement, various types of validation and key agreement protocols have been employed. The main problem with the two-way authentication of patients and medical servers is not built with thorough and comprehensive analysis that makes the protocol design yet has flaws. This paper analyzes carefully all aspects of security requirements including the perfect forward secrecy in order to develop an efficient and robust lightweight authentication and key agreement protocol. The secureness of the proposed protocol undergoes an informal analysis, whose findings show that different security features are provided, including perfect forward secrecy and a resistance to DoS attacks. Furthermore, it is simulated and formally analyzed using Scyther tool. Simulation results indicate the protocol’s robustness, both in perfect forward security and against various attacks. In addition, the proposed protocol was compared with those of other related protocols in term of time complexity and communication cost. The time complexity of the proposed protocol only involves time of performing a hash function Th, i.e.,: O(12Th). Average time required for executing the authentication is 0.006 seconds; with number of bit exchange is 704, both values are the lowest among the other protocols. The results of the comparison point to a superior performance by the proposed protocol.  相似文献   

9.
In order to deploy a secure WLAN mesh network, authentication of both users and APs is needed, and a secure authentication mechanism should be employed. However, some additional configurations of trusted third party agencies are still needed on-site to deploy a secure authentication system. This paper proposes a new block chain-based authentication protocol for WLAN mesh security access, to reduce the deployment costs and resolve the issues of requiring key delivery and central server during IEEE 802.11X authentication. This method takes the user’s authentication request as a transaction, considers all the authentication records in the mesh network as the public ledger and realizes the effective monitoring of the malicious attack. Finally, this paper analyzes the security of the protocol in detail, and proves that the new method can solve the dependence of the authentication node on PKI and CA.  相似文献   

10.
All the existing non-repudiation protocols ensuring strong fairness have to assume that the communication channel between trusted third party (TTP) and each player is resilient at least. Where only unreliable channel can be guaranteed, all these protocols become impractical. In this study, based on smart card on the receiver side, the authors design a fair non-repudiation protocol that needs no assumptions on the communication channel. The smart card takes over the role of an online TTP server. Without a dedicated TTP server, this protocol is ideal for some ad hoc scenarios where no infrastructure is available. This protocol can also be easily modified to support fair exchange of time-sensitive data. Compared with other traditional security protocols, automatic formal verification of fair non-repudiation protocols is much harder to achieve. The authors use meta-reasoning method to prove that the fair exchange property of this protocol can be reduced to three secrecy properties that fall into the scope of today's most automatic verification tools and therefore can be easily verified. The authors also use a recently proposed automatic method to verify the non-repudiation properties and fairness property of our protocol.  相似文献   

11.
一种新的轻量级的RFID认证协议(英文)   总被引:1,自引:0,他引:1  
无线射频识别技术(RFID)有望在不久的将来取代条形码系统,它的信息存储量以及传输信息的能力相比条形码都有明显的优势。然而,由此引发的用户隐私入侵和系统安全威胁一直是用户日益关注的问题。由于其设备的资源受限,以及无法执行强加密算法,因此于RFID系统中安全协议的执行是一个极大的挑战。为此,近来许多认证协议已被提出以防止未经授权的定位跟踪、检测、假冒、克隆等。本文提出了一种新的有效的轻量级射频识别认证协议,对于某些应用,它已能提供足够的安全级别。该协议中标签只需执行hash和异或运算而阅读器和后台服务器承担大部分的运算量包括伪随机数的产生以及加解密的运算。相比于其他协议,我们实现了防止隐私泄露、伪装等安全攻击的特点,适合于低成本、低计算量的RFID系统。  相似文献   

12.
The term IoT refers to the interconnection and exchange of data among devices/sensors. IoT devices are often small, low cost, and have limited resources. The IoT issues and challenges are growing increasingly. Security and privacy issues are among the most important concerns in IoT applications, such as smart buildings. Remote cybersecurity attacks are the attacks which do not require physical access to the IoT networks, where the attacker can remotely access and communicate with the IoT devices through a wireless communication channel. Thus, remote cybersecurity attacks are a significant threat. Emerging applications in smart environments such as smart buildings require remote access for both users and resources. Since the user/building communication channel is insecure, a lightweight and secure authentication protocol is required. In this paper, we propose a new secure remote user mutual authentication protocol based on transitory identities and multi-factor authentication for IoT smart building environment. The protocol ensures that only legitimate users can authenticate with smart building controllers in an anonymous, unlinkable, and untraceable manner. The protocol also avoids clock synchronization problem and can resist quantum computing attacks. The security of the protocol is evaluated using two different methods: (1) informal analysis; (2) model check using the automated validation of internet security protocols and applications (AVISPA) toolkit. The communication overhead and computational cost of the proposed are analyzed. The security and performance analysis show that our protocol is secure and efficient.  相似文献   

13.
Web authentication is often treated as a one-size-fits-all problem with ubiquitous use of the password. Indeed, authentication is seldom tailored to the needs of either the site or the target users. This paper does an in-depth analysis of all the vulnerabilities of authentication mechanisms, and proposes a structured and simple process which, if followed, will enable developers to choose a web authentication mechanism so that it matches the needs of their particular site.  相似文献   

14.
With the development of communication technologies, various mobile devices and different types of mobile services became available. The emergence of these services has brought great convenience to our lives. The multi-server architecture authentication protocols for mobile cloud computing were proposed to ensure the security and availability between mobile devices and mobile services. However, most of the protocols did not consider the case of hierarchical authentication. In the existing protocol, when a mobile user once registered at the registration center, he/she can successfully authenticate with all mobile service providers that are registered at the registration center, but real application scenarios are not like this. For some specific scenarios, some mobile service providers want to provide service only for particular users. For this reason, we propose a new hierarchical multi-server authentication protocol for mobile cloud computing. The proposed protocol ensures only particular types of users can successfully authenticate with certain types of mobile service providers. The proposed protocol reduces computing and communication costs by up to 42.6% and 54.2% compared to two superior protocols. The proposed protocol can also resist the attacks known so far.  相似文献   

15.
Internet of Things (IoT) devices incorporate a large amount of data in several fields, including those of medicine, business, and engineering. User authentication is paramount in the IoT era to assure connected devices’ security. However, traditional authentication methods and conventional biometrics-based authentication approaches such as face recognition, fingerprints, and password are vulnerable to various attacks, including smudge attacks, heat attacks, and shoulder surfing attacks. Behavioral biometrics is introduced by the powerful sensing capabilities of IoT devices such as smart wearables and smartphones, enabling continuous authentication. Artificial Intelligence (AI)-based approaches introduce a bright future in refining large amounts of homogeneous biometric data to provide innovative user authentication solutions. This paper presents a new continuous passive authentication approach capable of learning the signatures of IoT users utilizing smartphone sensors such as a gyroscope, magnetometer, and accelerometer to recognize users by their physical activities. This approach integrates the convolutional neural network (CNN) and recurrent neural network (RNN) models to learn signatures of human activities from different users. A series of experiments are conducted using the MotionSense dataset to validate the effectiveness of the proposed method. Our technique offers a competitive verification accuracy equal to 98.4%. We compared the proposed method with several conventional machine learning and CNN models and found that our proposed model achieves higher identification accuracy than the recently developed verification systems. The high accuracy achieved by the proposed method proves its effectiveness in recognizing IoT users passively through their physical activity patterns.  相似文献   

16.
提出了条件接收系统中智能卡和机顶盒安全通信的协议.协议使用了Schnorr身份方案实现机顶盒对智能卡的认证,并使用一个非对称密码系统实现智能卡对机顶盒的认证.协议最小化了智能卡的在线计算负担,同时保持与其它协议同样的安全水平.对协议的安全性和性能进行了分析.分析结果表明,协议对于恶意攻击是鲁棒的,并且非常适合于只有有限处理能力的智能卡.而且,协议为不同的条件接收系统使用同样的机顶盒提供了可能,因为在协议中机顶盒不需要事先存储任何条件接收系统的秘密私有数据.  相似文献   

17.
Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3-D password. The 3-D password is a multifactor authentication scheme. To be authenticated, we present a 3-D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3-D environment constructs the user's 3-D password. The 3-D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3-D virtual environment. The design of the 3-D virtual environment and the type of objects selected determine the 3-D password key space.   相似文献   

18.
A procedure for estimating the statistical characteristics of ordinary streams of random events is proposed. This procedure was used to investigate the characteristics of hacker phishing attacks in the period from December 2008 to October 2010. A comparative investigation of the monthly dynamics of phishing attacks and attacks using malicious software, recorded in 2009, is described.  相似文献   

19.
Quantum secure direct communication (QSDC) can transmit secret messages directly from one user to another without first establishing a shared secret key, which is different from quantum key distribution. In this paper, we propose a novel quantum secure direct communication protocol based on signal photons and Bell states. Before the execution of the proposed protocol, two participants Alice and Bob exchange their corresponding identity IDA and IDB through quantum key distribution and keep them secret, respectively. Then the message sender, Alice, encodes each secret message bit into two single photons (| 01〉or|10〉) or a Bell state , and composes an ordered secret message sequence. To insure the security of communication, Alice also prepares the decoy photons and inserts them into secret message sequence on the basis of the values of IDA and IDB. By the secret identity IDA and IDB, both sides of the communication can check eavesdropping and identify each other. The proposed protocol not only completes secure direct communication, but also realizes the mutual authentication. The security analysis of the proposed protocol is presented in the paper. The analysis results show that this protocol is secure against some common attacks, and no secret message leaks even if the messages are broken. Compared with the two-way QSDC protocols, the presented protocol is a one-way quantum communication protocol which has the immunity to Trojan horse attack. Furthermore, our proposed protocol can be realized without quantum memory.  相似文献   

20.
Cloud computing has gained significant use over the last decade due to its several benefits, including cost savings associated with setup, deployments, delivery, physical resource sharing across virtual machines, and availability of on-demand cloud services. However, in addition to usual threats in almost every computing environment, cloud computing has also introduced a set of new threats as consumers share physical resources due to the physical co-location paradigm. Furthermore, since there are a growing number of attacks directed at cloud environments (including dictionary attacks, replay code attacks, denial of service attacks, rootkit attacks, code injection attacks, etc.), customers require additional assurances before adopting cloud services. Moreover, the continuous integration and continuous deployment of the code fragments have made cloud services more prone to security breaches. In this study, the model based on the root of trust for continuous integration and continuous deployment is proposed, instead of only relying on a single sign-on authentication method that typically uses only id and password. The underlying study opted hardware security module by utilizing the Trusted Platform Module (TPM), which is commonly available as a cryptoprocessor on the motherboards of the personal computers and data center servers. The preliminary proof of concept demonstrated that the TPM features can be utilized through RESTful services to establish the root of trust for continuous integration and continuous deployment pipeline and can additionally be integrated as a secure microservice feature in the cloud computing environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号