共查询到17条相似文献,搜索用时 64 毫秒
1.
针对在复杂背景下,特别当目标与背景颜色相似、目标被遮挡时容易导致跟踪失败的问题,采用颜色与纹理两种互补特征融合的粒子滤波算法,同时提出一种融合策略自适应的抗遮挡跟踪方法,当遮挡发生时,适时切换融合策略,并在粒子滤波框架内嵌入mean-shift算法,克服了粒子退化现象。实验结果表明,该算法具有较强的抗遮挡能力,能够跟踪复杂背景下的目标。 相似文献
2.
针对视觉目标跟踪的遮挡问题,在TLD算法的基础上,引入特征重检环节,解决发生遮挡时因目标外观相似、背景聚类造成错判,提出了一种基于特征重检的抗遮挡目标跟踪研究方法(TLD-D),采用跟踪、检测、学习、再检测的策略。跟踪与检测相结合,对锁定的目标进行学习,获取目标最新的外观特征;当发生遮挡时,则启用特征重检环节,提取遮挡过程的"开始发生遮挡"和"遮挡结束"两个关键帧,然后在特征重检环节选用SIFT特征进行双向匹配标定目标,确保重新标定的目标为原被遮挡的跟踪目标,即"再检测"。OTB基准集上实验结果表明,与TLD算法、同类TLD改进算法以及其他经典跟踪算法相比较,TLD-D算法抗遮挡能力更强,鲁棒性更强,能够对目标长时间稳定跟踪。 相似文献
3.
在目标跟踪过程中,目标遮挡往往会造成跟踪器的性能下降,从而导致目标丢失。针对这一问题,提出一种基于LCT+核相关滤波的自适应抗遮挡目标跟踪算法。该算法在LCT+核相关滤波算法的基础上进行改进,利用双跟踪器自适应对目标进行跟踪,即根据两个跟踪器的输出响应值大小选择最优跟踪器跟踪目标;利用支持向量机自适应重新检测目标,即根据目标丢失帧的数量自适应调整检测框范围的大小;最后采用颜色直方图匹配的方法进一步验证预测的目标。相比原算法,所提算法采取双跟踪器自适应跟踪机制和支持向量机自适应重检测机制,有效避免了目标跟丢。在OTB50和OTB100两个大型基准数据集上对算法进行验证,结果表明该算法在距离精度和成功率的评估指标上都优于一些主流算法,并且在抗遮挡方面具有较高的精度和较强的鲁棒性。 相似文献
4.
传统MeanShift目标跟踪算法通过bin-bin颜色直方图表示目标特征,直方图中往往会混入背景颜色信息,造成跟踪不准确;同时由于MeanShift算法具有局部最优性,当目标受到严重遮挡丢失后,不能对目标重新定位跟踪。为了解决上述问题,在颜色直方图和抗遮挡能力方面进行了改进。利用交叉bin颜色直方图代替传统的bin-bin颜色直方图表示目标特征,减少背景颜色的干扰,提高MeanShift算法跟踪精度;当目标受到严重遮挡丢失后,通过一种尺度变化调整机制,在全局范围内搜索目标位置,提高MeanShift算法抗遮挡能力。实验显示,改进后的算法不仅在背景干扰大时对目标的跟踪精度更高,而且当目标受到严重遮挡丢失后,也能够对目标重新定位跟踪。 相似文献
5.
目标跟踪无法有效判断目标何时被遮挡以及同时配合模板更新.针对这一问题,文中提出基于遮挡检测和多块位置信息融合的分块目标跟踪算法.首先,将目标区域分成4个子块,结合目标整体,利用遮挡具有从局部开始和方向性的特点,计算各分块间相关值的比值,判断目标是否遮挡及遮挡部位.再根据目标是否遮挡,采用不同的更新方式.最后,根据未被遮挡的各个分块位置信息确定最终目标的位置.在数据集上的实验表明,文中算法可以有效判定目标是否存在遮挡,并提升遮挡情况下的跟踪效果. 相似文献
6.
提出了一种改进的粒子滤波算法,在遮挡情况下,能鲁棒地跟踪运动目标.该方法是把改进的颜色直方图结合到粒子滤波的观测模型中,并提出了一种判断目标遮挡的分块检测遮挡的方法.首先对传统的以核函数赋权值的方法进行改进,把目标中心附近的像素都赋予最大的权值,目标的边缘由于遮挡等原因采用指数分布赋权值;在遮挡检测时,提出了把跟踪窗分为左右两个子部分,分别计算相似性度量的方法,提高了遮挡检测的实时性和准确性;同时,该算法对旋转和尺寸的变化具有鲁棒性.实验结果表明,与基本的粒子滤波算法相比,提出的新算法能更好的处理目标跟踪中的遮挡问题. 相似文献
7.
由于传统空间欧氏距离最短法难以解决遮挡问题,提出一种固定场景下抗遮挡的对多个运动目标进行实时检测和跟踪的算法.在分析传统帧差算法的优缺点的基础上对其进行了改进,引入空间滤波和区域填充.介绍了传统空间欧氏距离最短法,分析了它的缺点.用带状态参量的空间欧氏距离最短法对每个视频运动目标质心进行关联,监测每个视频运动对象的运动状态、运动轨迹.通过实验证明,该方法在改进传统欧式距离最短法的基础上,能实时有效得跟踪运动目标. 相似文献
8.
针对复杂场景中的目标遮挡问题,提出一种基于均值漂移(Mean shift)和轨迹校正的自适应目标跟踪方法.由于Mean shift迭代易陷入局部最优点,这里引入Kalman滤波器以预测和校正目标运动轨迹,并根据迭代轨迹误差校正协方差,使得跟踪器在多峰值非高斯分布的复杂环境下也能收敛到全局最优点.基于Bhattacharrya系数计算色彩x、y方向分量相似度,并根据邻帧分量相似度偏差自适应调整相似度融合权值.综合当前帧和前面帧作用更新目标运动状态、特征和尺度模型.实验结果表明提出的方法对于静态场景遮挡和目标间互遮挡、部分和全部遮挡下的目标跟踪均具有鲁棒的跟踪性能. 相似文献
9.
在粒子滤波跟踪算法运行过程中,由于目标遮挡导致丢失目标,将严重地降低跟踪精度与鲁棒性。为了解决此问题,提出了目标丢失状态判定方法和基于改进序贯相似性检测的目标位置重建方法,当检测到目标丢失时,重启跟踪算法。改进序贯相似性检测使用Bhattacharyya距离代替像素累积误差,更好地适应检测目标发生旋转、形变、缩放等情况。使用OTB-100标准数据集,将该算法和传统粒子滤波跟踪算法、SCM等经典算法比较。实验结果表明,对于含遮挡特性视频序列,本文算法比传统粒子滤波跟踪算法和OTB-100抗遮挡最优算法跟踪成功率分别提高36.6%和3.2%,提升了跟踪过程的稳定性。此外,还将实验结果与最新粒子滤波跟踪研究成果作对比分析。 相似文献
10.
随着计算机视觉和无人机的蓬勃发展,目标跟踪是当下研究热点之一;但对于该方向,目前存在大量问题,目标的遮挡就是其中之一;因此,为了解决该问题,在此提出了一种无人机抗遮挡目标跟踪算法;该算法基于均值漂移目标跟踪算法;采用动态参数选择策略和双预测机制相结合的方法来解决目标跟踪过程中的目标遮挡问题;为了避免目标丢失,算法中采用目标检测的方法;大量实验表明,在与现有的算法比较过程中,该算法展示出了对遮挡目标跟踪有较好的鲁棒性和实时性;与其他算法相比,其精度提高约了10%,平均目标符合率提高了约15%。 相似文献
11.
结合图像梯度特征和颜色特征,在相关滤波器跟踪框架基础上,提出一种改进的 视觉跟踪算法。对颜色特征进行统计建模,结合由稠密目标后验概率积分得到的目标置信积分 和梯度特征相关滤波输出作目标跟踪。同时,还对目标跟踪的结果作质量评估,在跟踪质量非 可靠时启动目标重检测过程,采用基于稠密目标后验概率的置信积分来确定备选目标。对跟踪 质量不可靠且未重检测到可靠目标的视频帧,不进行跟踪模型的在线更新。实验表明,该算法 可以有效避免因遮掩等原因而引起的跟踪不可靠和模型漂移的问题,跟踪性能和几个主流的相 关滤波类跟踪器相比有明显改善。 相似文献
12.
基于人体主颜色特征的多摄像机目标连续跟踪 总被引:1,自引:0,他引:1
多摄像机视野之间的运动目标交接一直是广域视频监控系统中的难点.根据人体模型的基本理论,提出了一种基于人体模型分割和主颜色识别的目标连续跟踪算法.该方法无需进行复杂的特征(如SIFT特征)提取,而以目标质心距离结合目标主颜色距离作为判断特征,实现多摄像机目标交接.实验结果表明,该方法能有效准确识别公共区域内的运动目标,并... 相似文献
13.
基于区域生长的彩色图像分割算法 总被引:1,自引:2,他引:1
针对传统种子区域生长算法在分割具有复杂纹理的彩色图像中存在的问题,提出一种改进的种子区域生长算法,该算法在YCbCr颜色空间中进行,采用离散余弦变换提取图像纹理特征值,进行自动种子及种子区域的生长,并用区域合并改善过度分割。实验结果表明,该算法能有效提高图像分割的精确性。 相似文献
14.
为解决传统基于核相关滤波器(KCF)的目标跟踪方法中跟踪框尺度无法自适应及目标被遮挡导致的跟踪失败问题,以空中加油视觉导航中圆形锥套目标的跟踪为例,提出了一种分块检测尺度自适应的圆形目标相关跟踪方法。利用目标外部边缘特征点的提取与轮廓拟合方法解决了圆形目标跟踪所存在的目标尺度变换问题,通过分块检测将跟踪过程中目标遮挡情况与跟踪失败情况区分开来,消除了遮挡情况下跟踪积累误差,实现了部分遮挡情况下目标的跟踪。实验结果表明,提出的圆形目标尺度自适应相关跟踪方法具有较高实时性、可靠性与准确性,实现了空中加油对接过程中对于锥套的稳定、可靠跟踪。 相似文献
15.
Singer模型是典型的全局统计模型,其严重缺陷在于所采用的零均值时间相关模型和标准卡尔曼滤波算法不能完成对机动目标状态的正确估计1只有当目标做匀速直线运动时,动态误差的稳态值才为零,否则不为零;采用PF—Singer算法对机动目标进行跟踪。能够有效解决传统Singer模型存在的问题,提高其跟踪精度;通过仿真试验证实了该算法的有效性。 相似文献
16.
基于自适应卡尔曼滤波的机动目标跟踪算法 总被引:1,自引:0,他引:1
在机动目标跟踪过程中,由于目标运动的不确定性,雷达系统接收的数据存在噪声,使预置目标运动模型通常很难得到较高的跟踪精度。为此,以自适应卡尔曼滤波为基础,将直角坐标系和球坐标系相结合,提出了一种混合坐标系下的自适应卡尔曼滤波算法。算法避免了两个坐标系变换引起的噪声统计规律变化问题,并针对目标发生大机动运动的情况,自适应的调整动态模型中机动目标运动参数。蒙特卡洛仿真结果表明,改进算法的收敛速度和对状态的估计精度均得到优化,并对机动目标具有较好的跟踪性能。 相似文献
17.
为了有效地实现复杂环境下视频目标跟踪,在分析了基于颜色分布的均值偏移跟踪算法的基础上,提出了一种联合空间信息的改进均值偏移算法,此算法是将目标空间位置预测与均值偏移算法定位结果通过加权得到最终目标位置,实验表明,改进算法将目标颜色分布与目标空间运动信息相结合,保证了跟踪效果的稳定性和鲁棒性. 相似文献