共查询到18条相似文献,搜索用时 78 毫秒
1.
采用快速电通量法及长期氯盐浸泡试验,研究了氧化石墨烯(GO)改性水泥砂浆的抗氯离子渗透性能,分析了电通量与表观氯离子扩散系数之间的关系,并通过扫描电镜(SEM)分析了其微观结构。结果表明:掺入适量的GO能够提升水泥砂浆的抗氯离子渗透性能,当掺量为0.06%(质量分数)时最显著,与无GO的对照组相比,水泥砂浆的电通量和氯离子侵蚀深度分别降低了34.5%和27.2%;长期氯盐浸泡60 d、120 d后,0~5 mm处的自由氯离子浓度最高分别降低了28.4%和15.3%;电通量与表观氯离子扩散系数之间存在良好的线性关系;GO有效调节了水化产物形状,减少了内部孔隙,使其微观结构更加密实,从而提升了水泥砂浆抗氯离子渗透性能。 相似文献
2.
在低温(10 ℃)-干湿循环双重环境下,对不同水灰比不同胶凝材料方案的水泥砂浆试件的抗硫酸盐侵蚀性能进行了试验研究,其中水灰比采用0.5和0.36,胶凝材料分别为普通硅酸盐水泥、中抗硫酸盐硅酸盐水泥和在普通硅酸盐水泥中分别掺入15%矿粉+1%硅灰和15%矿粉+3%硅灰.结果表明:在低温(10 ℃)-干湿循环双重条件下,既存在化学侵蚀又存在物理侵蚀,但是以物理侵蚀为主;通过降低水灰比或者使用抗硫酸盐硅酸盐水泥能显著提高砂浆抗硫酸盐侵蚀性能;在不同的水灰比下,复掺矿粉和硅灰会得到不同的效果,在低水灰比时能提高抗硫酸盐侵蚀的性能,在高水灰比时反而会降低抗硫酸盐侵蚀的性能. 相似文献
3.
“零”水泥制备的碱激发混凝土(AAC)因其具有快硬高强、耐久性好等优异性能,已被认为是一种具有广泛应用潜力的新型绿色胶凝材料。氯盐侵蚀是引起钢筋锈蚀从而导致钢筋混凝土结构耐久性失效的主要原因之一,尤其是在海洋干湿循环区域。因此,开展干湿交替作用下AAC的氯盐侵蚀性能分析对其耐久性理论的发展具有重要意义。将AAC与C50混凝土进行对比,通过自设计的干湿循环全自动实验装置,研究了干湿循环时间比(3.0:1.0、11.0:1.0、85.4:1.0)和暴露时间(30、90、180 d)对AAC氯盐侵蚀性能的影响;基于此,建立了干湿循环作用下氯盐侵蚀理论模型,并进行数值计算与模型验证。结果表明:AAC氯离子含量明显少于C50混凝土,这是由于AAC具有较小的孔隙率和致密的孔隙结构,内部的孔径明显小于C50混凝土,从而表现出更好的抗氯盐侵蚀性能;随着干湿循环时间比的增加,混凝土表面氯离子浓度和表观氯离子扩散系数都呈现先增大后减小趋势;经验证,利用所建立的干湿循环作用下非饱和混凝土氯离子传输模型的数值计算结果与试验结果吻合较好。 相似文献
4.
氯离子侵蚀是影响混凝土耐久性的重要因素。通过干湿循环试验,研究了煤矸石混凝土的抗氯离子侵蚀性能,分析了煤矸石体积取代率(0%、20%、40%、60%)对氯离子浓度分布和表观扩散系数的影响。通过压汞试验,测定了煤矸石混凝土的孔结构参数,通过计算其孔隙体积分形维数,研究了孔结构对煤矸石混凝土抗氯离子侵蚀性能的影响。结果表明:随着煤矸石掺量的增加,自由氯离子的浓度先减小后增加,而表观扩散系数先增加后减小;煤矸石掺量为40%时,混凝土密实性最好,孔隙体积分形维数最大;与未添加煤矸石的混凝土相比,掺量40%的煤矸石混凝土氯离子浓度最低,此时抗氯离子侵蚀性能最好,且表观扩散系数下降35.68%。 相似文献
5.
通过设计正交试验法确定了氧化石墨烯水清洗工艺流程的最佳工艺条件,即将由改进Hummers制备的酸性氧化石墨烯先稀释5倍,然后在转速7 000 r/min下运行10 min,离心8次即可将酸性氧化石墨烯清洗至中性,总用水量与总用时达到一个平衡;并对中性氧化石墨烯进行形貌结构及电化学性能测试分析,其作为超级电容器材料有着广泛的应用前景。 相似文献
6.
7.
研究了不同水泥品种、矿物掺合料对水泥基材料在5℃下抗硫酸盐侵蚀的性能的影响,分别采用普通硅酸盐水泥、中抗硫水泥以及加入矿粉与硅灰的水泥砂浆试件,测试各试样在(5±1)℃的3%Na2 SO4溶液浸泡后的强度变化情况,综合考虑砂浆强度与抗蚀系数对砂浆抗硫酸盐侵蚀性能进行评价,并运用SEM、EDS、XRD分析方法对腐蚀机理进行了分析.结果表明:在5℃环境下,砂浆试样的强度普遍低于常温环境下,砂浆抗硫酸盐侵蚀能力15%矿粉+3%硅灰>中抗硫水泥>15%矿粉+1%硅灰>普通硅酸盐水泥;加入矿物掺合料明显改善了水泥砂浆抗硫酸盐侵蚀性能,并且硅灰的含量越高效果越明显;低温下腐蚀产物不仅有石膏,还有碳硫硅钙石的生成. 相似文献
8.
硫酸盐是影响混凝土腐蚀的重要物料,将水泥砂浆浸泡在水中和硫酸盐溶液中进行对比实验,考查粉煤灰对水泥砂浆抗硫酸盐腐蚀的影响。结果表明,硫酸盐侵蚀是造成水泥砂浆混凝土劣化的主要原因之一,硫酸盐侵入水泥砂浆中与水泥水化产物发生反应,生成石膏和钙矾石,导致水泥石破坏。试验认为,粉煤灰的加入,能降低水泥石中的易蚀成分,有效改善孔结构,从而获得具有良好抗蚀性的水泥砂浆。 相似文献
9.
主要研究了氯盐环境中掺粉煤灰和矿粉的砂浆性能.通过测试在氯化钠和氯化钙溶液浸泡之后的水泥砂浆的自由氯离子浓度和总氯离子浓度,研究了矿物掺合料对氯离子结合能力的影响,结论表明随着矿物掺合料掺量的增加,砂浆的氯离子结合能力也会提高.基于RCM法检测了砂浆的氯离子扩散系数,结果表明粉煤灰和矿粉均可以提高混凝土的抗氯离子渗透性,并且矿粉对抗氯离子渗透性的改善作用更显著.基于氯盐结晶、氢氧化钙溶出、Friedel's盐角度,分析砂浆孔隙率变化的原因,结论表明氯盐会导致砂浆孔隙率增加,而矿物掺合料则可以减小由氯盐引起的孔隙率增加的作用. 相似文献
10.
为探究干湿循环作用下聚丙烯纤维混凝土中氯离子的传输规律,设计了四种掺量的聚丙烯纤维混凝土,对其在不同干湿循环周期下的自由氯离子含量和总氯离子含量进行测量,分析聚丙烯纤维掺入对混凝土氯离子结合性能及氯离子扩散系数的影响。结果表明:0.15%(体积分数,下同)聚丙烯纤维的掺入可以增加混凝土密实度,降低自由氯离子含量;而大量纤维的掺入(<0.45%)导致混凝土内部自由氯离子含量增加,增大了混凝土的氯离子结合能力。聚丙烯纤维掺量0%~0.45%范围内,氯离子结合能力与纤维掺量存在二次函数关系。聚丙烯纤维的掺入降低了干湿循环后期氯离子扩散系数,增大了时间依赖系数m,有利于提高混凝土抗氯离子侵蚀能力。 相似文献
11.
研究了干湿循环作用下混凝土裂缝区域的氯离子浓度分布和裂缝影响区域.制备了不同宽度横向裂缝的混凝土试件,采用干湿循环加速氯离子对混凝土的侵蚀,定期检测不同侵蚀周期试件破型后裂缝侧面以及试件上表面至钢筋方向的氯离子浓度.试验结果表明:氯离子浓度随着传输深度增加而降低,在20 mm处基本稳定.随着干湿循环的进行,在20个干湿循环周期后,裂缝宽度为0.1~0.5 mm的试件,裂缝侧面30 mm处氯离子浓度都大于0.1%,钢筋在裂缝左右30 mm范围内有锈蚀的危险.并且由于二维传输的互相影响,裂缝宽度越大,相同传输深度氯离子浓度也越高. 相似文献
12.
13.
煤矸石掺合料对水泥砂浆抗硫酸盐侵蚀性的影响 总被引:1,自引:0,他引:1
在10%Na2SO4溶液中分别进行干湿循环和长期侵蚀试验,以研究煤矸石掺合料对水泥砂浆抗硫酸盐侵蚀性的影响,并与矿粉掺合料和粉煤灰掺合料进行了比较。 相似文献
14.
采用干湿循环作用下不同pH值条件(2,7,12)与不同浓度(2.5%、5%、10%)NaSO4溶液协同作用加速劣化试验,以质量损失率、抗折强度损失率和抗压强度损失率作为评价指标评价了水泥砂浆的盐蚀损伤效应;运用灰熵法分析了水泥砂浆盐蚀损伤效应影响因素-pH值、Na2SO4浓度、水灰比-的显著性.结果表明:水泥砂浆在酸性环境下的硫酸盐侵蚀损伤较碱性环境下更为严重;水灰比对水泥砂浆盐蚀损伤效应有最显著影响;掺入适量粉煤灰有利于提高水泥砂浆抗硫酸盐侵蚀性能.研究成果可为硫酸盐富集地区水泥结构物材料组成设计提供有益参考. 相似文献
15.
混凝土孔溶液中的自由氯离子转化为结合氯离子可有效降低沿海、盐湖地区钢筋混凝土结构中的钢筋的腐蚀程度。以纳米碳酸钙掺量和氯离子浓度为变量,研究了纳米碳酸钙对水泥石氯离子结合量的影响,采用电位滴定法测定结合氯离子含量,根据氯离子等温吸附理论绘制结合氯离子与自由氯离子的拟合关系曲线来分析水泥石的氯离子结合能力,通过XRD和热重分析研究水泥石的氯离子结合机理。结果表明:纳米碳酸钙的掺入提高了水泥石的氯离子结合量,当其掺量达3%(质量分数)时,水泥石的氯离子总结合量最大;随着氯离子浓度的提高,掺纳米碳酸钙的水泥石氯离子结合量会相应增加;纳米碳酸钙的掺入可以加快水泥水化,促进C-S-H凝胶和Friedel's盐的生成,有利于水泥石的氯离子物理吸附和化学结合。 相似文献
16.
随着纳米材料和技术不断发展,关于氧化石墨烯对水泥基材料改性作用的相关研究越来越受到重视.在此背景下,通过Anton Paar Rheolab QC型旋转黏度计研究了氧化石墨烯对新拌水泥浆体流变性的影响,并测试了浆体静态屈服应力、动态屈服应力和黏度系数以及触变环面积.结果表明:相同氧化石墨烯掺量下,随浆体静置时间延长,低... 相似文献
17.
18.
氧化石墨烯(GO)在水泥中的分散性较差,限制了其提高水泥基复合材料性能。采用溶胶-凝胶法制备了纳米二氧化硅/氧化石墨烯复合物(GOS),在模拟的水泥孔隙溶液中对比了GO和GOS的分散稳定性;同时,制备了添加纳米片的水泥浆体,研究了GO和GOS对其力学性能的影响。结果表明:GOS在水泥环境中的分散稳定性明显优于GO;与对照组相比,GO/水泥基复合材料的28 d抗折和抗压强度分别提高了20.48%和13.14%,而GOS/水泥基复合材料分别提高了35.42%和23.90%。微观分析表明,GO/水泥基复合材料内部形成花状水化晶体,GOS/水泥基复合材料内部的水化晶体彼此交联,结构致密,降低了水泥脆性,提高了韧性。 相似文献