首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Composition plays an important role in the hot cracking of alloys in the casting process. For the sake of simplicity, binary alloys are employed to study the effect of composition on hot cracking in this paper. The available experimental observations on the hot cracking of binary alloys are reanalyzed and a simple rule that reflects the compositional effect on hot cracking is proposed. The analysis shows that for most binary alloys the most important factor in hot cracking is the critical value at which the remaining fraction liquid for solidification till the eutectic temperature is about 1%. Hot cracking disappears at another critical content, at which the remaining fraction liquid at eutectic temperature is around 10%. The Scheil equation is employed to evaluate the variation in fraction solid and liquid in the assessments.  相似文献   

2.
通过对合金的收缩应变和热裂抗力及准固态拉伸行为进行测试,研究了合金元素(Si,La)对Al-4.5Cu合金凝固行为的影响。结果表明,Si,La能使Al-4.5Cu的热裂倾向性降低;加入2%Si使合金的再辉现象非常严重,导致合金不可能有很高的强度而很快断裂:与其它Al-4.5Cu-Si合金相比,Al4.5Cu3Si合金具有很强的补缩能力,断裂应力值最高:La的加入能缩小二次枝晶间距,明显提高合金的抗热裂性能。  相似文献   

3.
合金元素对铸造Al-4.5Cu合金准固态力学行为的影响   总被引:3,自引:0,他引:3  
研究了铸造Al-4.5Cu合金的准固态力学行为及几种合金元素对其凝固行为的影响。结果表明:Si,Ce,La,Ti及Zr元素可有效减小Al-4.5Cu合金的结晶范围,从而使其热裂倾向性降低;La元素的加入可提高Al-4.5Cu合金的热裂抗力:并研制了一种新型Al-4.5Cu合金,该合金具有良好的室温与高温综合性能。  相似文献   

4.
ABSTRACT

The higher hot cracking tendency during fusion welding in traditional high-strength 7000 series alloys has been an obstacle for its further application. In this study, the cracking susceptibility can be suppressed by fabricating Al–Mg–Zn–Cu alloys with Zn/Mg≤1 and Cu/Mg≤0.25 while simultaneously maintaining the high strength. A T-shaped device combined with non-equilibrium solidification is developed to simulate the solidification during fusion welding, and it is effective to predict the shrinkage load, temperature and solid fraction. The effect of solidification temperature range, the amount of eutectics at the terminal stage of solidification and the shrinkage load during solidification on the hot cracking susceptibility are discussed in detail.  相似文献   

5.
A systematical study on the relationship between the amounts of different eutectic phases especially the low-melting-point (LMP) eutectics and the hot tearing susceptibility of ternary Al−Cu−Mg alloys during solidification was performed. By controlling the concentrations of major alloying elements (Cu, Mg), the amounts of LMP eutectics at the final stages of solidification were varied and the corresponding hot tearing susceptibility (HTS) was determined. The results showed that the Al−4.6Cu−0.4Mg (wt.%) alloy, which contained the smallest fraction of LMP eutectics among the investigated alloys, was observed to be the most susceptible to hot tearing. With the amount of total residual liquid being approximately the same in the alloys, the hot tearing resistance is considered to be closely related to the amounts of LMP eutectics. Specifically, the higher the amount of LMP eutectics was, the lower the HTS of the alloy was. Further, the potential mechanism of low HTS for alloys with high amounts of LMP eutectics among ternary Al−Cu−Mg alloys was discussed in terms of feeding ability and permeability as well as total viscosity evolution during solidification.  相似文献   

6.
采用半定量等级评定方法,研究了炉膛温度变化对定向凝固Al-0.6%Cu和Al-2.0%Cu两种合金热裂倾向的影响.定向凝固冷却曲线的测量和热裂形式的凝固分析表明:定向凝固过程中合金的不可补缩长度对热裂纹的形成有重要影响.  相似文献   

7.
铝合金焊接凝固裂纹高温动态开裂行为   总被引:1,自引:0,他引:1       下载免费PDF全文
详细研究了5083、6082、ZL101三种铝合金的凝固金相组织,观察和记录了三种材料高温拉伸开裂动态过程及开裂后的断口特征。结果表明,材料的冶金因素制约着凝固裂纹的动态开裂行为,即材料的冶金特性不同,它们的凝固裂纹开裂模型也不同。文中由此总结了凝固裂纹的三种开裂模型。第一,裂纹形成时存在“愈合作用”,ZL101属于此列。第二,裂纹形成时伴随着金属桥的变形与断裂,如5083材料。第三。裂纹形成时晶粒是沿液膜分离。如6082。  相似文献   

8.
The possibility of determining the hot cracking index using the calculated value of the effective solidification range is investigated for multicomponent cast aluminium alloys based on the system Al–Si–Cu–Mg with Mn, Ni, Fe and Zn additives. The upper limit of the effective solidification range was calculated as the temperature of formation of 65 wt-% solid phase using Sheil model. The linear relationship of the hot cracking index and the effective solidification range in the industrial and experimental multicomponent alloys based on the Al–Si–Cu–Mg system is demonstrated.  相似文献   

9.
通过Clyne-Davies模型对MgZn2.5YxZr0.5(x=0.5,1,2,4,6)系合金的热裂敏感性进行预测;采用X射线衍射和扫描电子显微镜分别对MgZn2.5YxZr0.5系合金进行显微组织和热裂区域组织形貌观察,并用自制的"T"形热裂模具,通过A/D转换,用计算机对MgZn2.5YxZr0.5系合金凝固过程中的温度、收缩应力信号数据进行采集和进一步的处理,并描绘其曲线。研究MgZn2.5YxZr0.5合金的凝固温度区间、脆弱区域的凝固温度变化、凝固最后阶段剩余液相分数以及合金中第二相种类等因素对MgZn2.5YxZr0.5系合金热裂倾向的影响:合金热裂倾向从大到小顺序为MgZn2.5Y2Zr0.5,MgZn2.5Y0.5Zr0.5,MgZn2.5Y4Zr0.5,MgZn2.5Y6Zr0.5,MgZn2.5Y1Zr0.5。由于MgZn2.5Y2Zr0.5合金的凝固温度区间最宽,脆弱区域的凝固温度变化最大,凝固最后阶段形成的液膜最少,枝晶干涉点后析出的第二相阻碍枝晶间的补缩等多种原因而造成合金的热裂倾向最大。  相似文献   

10.
凝固收缩补偿与合金的热裂倾向   总被引:17,自引:0,他引:17  
在总结前人热裂纹研究的基础,提出了热裂纹形成的凝固收缩补偿模型,该模型将合金凝固过程按收缩补偿方式分为准液相区,可补缩区,不可补缩区,晶间塔桥四个阶段,热黎明纹形成于不可补缩区,晶间液相收缩产生孔洞,并在进一步收缩过程中扩展为热裂纹,利用等径圆柱和等径圆球模型计算出理想状态下柱状晶和等轴晶不可补缩区液相体积分数范围分别为0.31%-9.3%和0.83%-26%,对Al-Cu合金和Al-Si合金不可  相似文献   

11.
High crack tendency is easy to occur during preparation of the castings and ingots of Al-Zn-Mg-Cu alloy, and it is most difficult to be solved due to the characteristics for the series alloy. As-cast microstructures and hot cracking tendency of Al-Zn-Mg-Cu alloy with different addition levels of Al-5Ti-1B-1Re were investigated in the paper. Moreover, solidification characteristics of the experimental alloys with different mass fractions of Al-5Ti-1B-1Re were analyzed, and the addition content of Al-5Ti-1B-1Re was optimized. These results indicate that the microstructure of the experimental alloys with Al-5Ti-1B-1Re refiner is fine obviously, the dendrite shape refined by Al-5Ti-1B-1Re becomes more globular, the grain boundary is smoother, and the SDAS is smaller compared with the alloy without Al-5Ti-1B-1Re. When the addition level of the grain refiner is less than 0.2%, the hot cracking tendency for the experimental alloy is reduced. The addition of 0.2% Al-5Ti-1B-1Re is best effective to improve the as-cast microstructures and hot cracking of Al-Zn-Mg-Cu alloy, and the best addition level of Al-5Ti-1B-1Re refiner is 0.2%.  相似文献   

12.
The most popular mould configuration for hot tearing evaluation of aluminium alloys, the Constrained Rod Casting (CRC) design, was evaluated via computer modelling. Filling patterns, heat flows, and shrinkage areas were assessed using the existing published design, and improvements in the design were generated. A mould of the improved design or Enhanced Constrained Rod Casting (ECRC) was fabricated and successfully used to evaluate the hot tearing tendencies of A206.2 and A380 die casting alloys. The ECRC mould reduced fill time and increased uniform filling of the constrained rods, which resulted in more uniform solidification rates for all the constrained rods. The ECRC mould and novel measurement technique predicted hot tearing in real time of A206.2 and A380 die casting alloys at initial pouring temperatures of 700, 760, and 800 °C. The A206.2 alloy exhibited hot tearing characteristics at the measurement rod while A380 did not show any hot cracking defects.  相似文献   

13.
二元合金非等温凝固过程的相场法模拟   总被引:3,自引:0,他引:3  
基于Ginzburg-Landau理论,发展了一个新的相场模型.并利用该相场模型与溶质场、温度场进行耦合计算,以Al-6.5Cu合金为例模拟了二元合金非等温凝固和等温凝固的等轴枝晶生长过程.研究了凝固潜热对过冷合金熔液中的等轴枝晶生长以及溶质场和温度场的分布的影响.结果表明:潜热的释放在一定程度上抑制了枝晶的生长,使非等温凝固时枝晶没有等温凝固时发达,并且凝固界面的溶质浓度也会降低,但不会改变在枝晶生长过程中浓度分布情况.而且非等温凝固时的Peclet数值与Ivantsov理论值符合得更好.  相似文献   

14.
The effects of Mg content and cooling rate on the solidification behaviour of Al-7% Si-Mg(mass fraction)casting alloys have been investigated using differential scanning calorimetry, differential thermal analysis and microscopy. The Mg contents were selected as respectively 0.00%, 0.35% and 0. 70% (mass fraction). DTA curves of Al-7%Si-0.55%Mg(mass fraction) alloy at various cooling rates were accomplished and the alloy melt was cast in different cooling rates. The results indicate that increasing Mg content can lower the liquidus and binary Al-Si eutectic transformation temperatures. Large Fe-rich π-phases (AlsFeMg3Si6) are found in the 0.70% Mg alloys together with some small β-phases (Al5FeSi) ; in contrast, only β-phases are observed in the 0.35% Mg alloys. The test results of the Al-7%Si-0.55% Mg alloys identify that the liquidus and binary Al-Si eutectic transformation temperatures decrease, and the quantity of ternary Al-Si-Mg2 Si eutectic phase decreases as the cooling rate increases.  相似文献   

15.
A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed.And the microstructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal heat treatment was investigated. The mechanism of the microstructure evolution and the processing conditions for isothermal heat treatment were also discussed.The results show that the microstructures of cast alloys consist ofα-Mg,β-Mg17Al12 and a small amount of Al-Mn compounds.After holding at 520℃ for 3 min,the phases ofβ-Mg17Al12 and eutectic mixtures in the Mg-14Al-0.5Mn alloy melt and the microstructures ofα-Mg change from developed dendrites to irregular solid particles.With increasing the isothermal time,the amount of liquid increases,and the solid particles grow large and become spherical.When the holding time lasts for 20 min or even longer,the solid and liquid phases achieve a state of dynamic equilibrium.  相似文献   

16.

Hot tearing is one of the most serious defects during the casting solidification process. In this study, a new type of multichannel “cross” hot tearing device was designed. The hot cracks initiation and propagation were predicted by the relationship between temperature, shrinkage force and solidification time during the casting solidification process. The reliability and practicability of the multichannel “cross” hot tearing device were verified by casting experiments and numerical simulations. The theoretical calculation based on Clyne-Davies model and numerical simulation results show that the hot tearing tendency decreases in the order: 2024 Al alloy>Al-Cu alloy>Al-Si alloy at a pouring temperature of 670 °C and a mold temperature of 25 °C. Feeding of liquid films at the end of solidification plays an important role in the propagation process of hot tearing. The decrease of hot tearing tendency is attributed to the feeding of liquid film and intergranular bridging.

  相似文献   

17.
在HRS定向凝固设备上进行了合金热裂试验,采用半定量方法评定了定向凝固Al-Cu和Renel25合金热裂倾向。观察了合金的晶界,并分析讨论了其对合金热裂的影响。用晶界状态分析的结果与试验结果完全一致。证明了晶界状态对热裂纹的形成有重要影响,其影响包括对晶间结合力的破坏作用和对晶界凝固收缩的补偿作用。晶界状态对热裂影响的综合作用取决于晶界低熔点相的分布和数量。  相似文献   

18.
The effects of 0.3%(molar fraction, the same below) yttrium addition on hot deformability of lamellar Ti-45Al-5Nb alloy were investigated by simulated isothermal forging tests. The ingots with the nominal compositions of Ti-45Al-5Nb and Ti-45Al-5Nb-0.3Y were prepared by induction skull melting. Simulated isothermal forging tests were conducted on Gleeble 1500D thermo-simulation machine using a 6 mm in diameter and 10 mm in length compressive specimen at the deformation temperatures of 1 100, 1 150, 1 200 ℃ and strain rates of 1.0, 0.1, 0.01 s^-1. The results show that yttrium addition remarkably improves hot deformability of Ti-45Al-5Nb alloy. An appropriate hot deformation processing parameter of Ti-45Al-5Nb-0.3Y alloy is determined as 1 200 ℃, 0.01 s^-1. The flow stresses are decreased by yttrium addition under the same compressive conditions. The activation energies of deformation Q are calculated as 448.6 and 399.5 kJ/mol for Y-free and Y-containing alloys, respectively. The deformed microstructure observation under 1 200 ℃, 0.01 s^-1 condition indicates that Ti-45Al-5Nb-0.3Y alloy shows more dynamic recrystallization. The improvement of hot deformability of Ti-45Al-5Nb-0.3Y alloy induced by yttrium addition should be attributed to that the smaller the original lamellar colonies, the lower the deformation resistance and activation energy of deformation are, and the more the dynamic recrystallization is.  相似文献   

19.
原位内生TiB_2/Al-4Cu复合材料半固态二次加热组织演化   总被引:1,自引:1,他引:0  
对原位内生TiB2/Al-4Cu复合材料半固态坯料进行二次加热,利用光学显微镜,图像分析仪等手段,对坯料二次加热微观组织的演化进行了研究。结果表明,随着加热温度的升高和保温时间的延长,液相分数增加,α(Al)晶粒发生了长大和圆整化。TiB2/Al-4Cu复合材料合适的半固态重熔参数为:加热温度570~600℃,保温时间小于10min。组织演化机制分析表明,二次加热初期,液相少,晶粒主要通过快速合并长大。随着加热温度的升高和保温时间的延长,液相增加,晶粒主要通过原子扩散缓慢长大并发生球化。  相似文献   

20.
采用大挤压比热挤压预变形的SIMA法制备了5083铝合金半固态坯料,研究了在不同加热温度和保温时间条件下二次加热重熔组织的演变规律,以及不同工艺参数对一道次触变轧制后带材力学性能的影响.结果表明,在二次加热过程中,晶粒形状和液相率主要受加热温度影响,而受加热保温时间的影响不大.在一道次触变轧制中,当二次加热温度为600℃,轧制变形量为60%时,可以获得抗拉强度为260.93MPa,伸长率为26.81%的较好综合力学性能的带材.经40%变形量二次冷轧后,带材的抗拉强度提高了70MPa.结合拉伸断口的宏观和微观形貌分析,可知带材的断裂方式为微孔聚集型的韧性断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号